Skip to main content

Advertisement

Log in

Discovering New Classes of Brugia malayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

SLIDE software, which models the flexibility of protein and ligand side chains while docking, was used to screen several large databases to identify inhibitors of Brugia malayi asparaginyl-tRNA synthetase (AsnRS), a target for anti-parasitic drug design. Seven classes of compounds identified by SLIDE were confirmed as micromolar inhibitors of the enzyme. Analogs of one of these classes of inhibitors, the long side-chain variolins, cannot bind to the adenosyl pocket of the closed conformation of AsnRS due to steric clashes, though the short side-chain variolins identified by SLIDE␣apparently bind isosterically with adenosine. We hypothesized that an open conformation of the motif 2 loop also permits the long side-chain variolins to bind in the adenosine pocket and that their selectivity for Brugia relative to human AsnRS can be explained by differences in the sequence and conformation of this loop. Loop flexibility sampling using Rigidity Optimized Conformational Kinetics (ROCK) confirms this possibility, while scoring of the relative affinities of the different ligands by SLIDE correlates well with the compounds’ ranks in inhibition assays. Combining ROCK and SLIDE provides a promising approach for exploiting conformational flexibility in structure-based screening and design of species selective inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AARS:

aminoacyl-tRNA synthetases

ASNAMS:

asparaginyl sulfamoyl adenylate

AsnRS:

asparaginyl-tRNA synthetase

CSD:

Cambridge Structural Database

LBHAMP:

l-aspartate-β-hydroxamate adenylate

MD:

molecular dynamics

PDB:

Protein Data Bank

SMEVAR:

S-methyl-deoxyvariolin B

References

  1. Lazdins J, Kron M (1999) Parasitol Today 15:305

    Article  CAS  Google Scholar 

  2. Melrose WD (2002) Int J Parasitol 32:947

    Article  Google Scholar 

  3. Kron MA, Kuhn LA, Sanschagrin PC, Härtlein M, Grøtli M, Cusack S (2003) J Parasitol 89(Suppl):S226

    Google Scholar 

  4. Brown KR, Ricci FM, Ottesen EA (2000) Parasitology 121:S133

    Article  Google Scholar 

  5. Horton J, Witt C, Ottesen EA, Lazdins JK, Addiss DG, Awadzi K, Beach MJ, Belizario VY, Dunyo SK, Espinel M, Gyapong JO, Hossain M, Ismail MM, Jayakody RL, Lammie PJ, Makunde W, Richard-Lenoble D, Selve B, Shenoy RK, Simonsen PE, Wamae CN, Weerasooriya MV (2000) Parasitology 121:S147

    Article  Google Scholar 

  6. Schimmel P, Tao JS, Hill J (1998) FASEB J 12:1599

    CAS  Google Scholar 

  7. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Nature 347:203

    Article  CAS  Google Scholar 

  8. Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R (1990) Nature 347:249

    Article  CAS  Google Scholar 

  9. Woese CR, Olsen GJ, Ibba M, Soll D (2000) Microbiol Mol Biol Rev 64:202

    Article  CAS  Google Scholar 

  10. Brown MJB, Mensah LM, Doyle ML, Broom NJP, Osbourne N, Forrest AK, Richardson CM, Oȁ9Hanlon PJ, Pope AJ (2000) Biochemistry 39:6003

    Article  CAS  Google Scholar 

  11. Casewell MW, Hill RLR (1985) J Antimicrob Chemoth 15:523

    Article  CAS  Google Scholar 

  12. Hughes J, Mellows G (1980) Biochem J 191:209

    CAS  Google Scholar 

  13. Nilsen TW, Maroney PA, Goodwin RG, Perrine KG, Denker JA, Nanduri J, Kazura JW (1988) Proc Natl Acad Sci USA 85:3604

    Article  CAS  Google Scholar 

  14. Kron M, Petridis M, Milev Y, Leykam J, Härtlein M (2003) Mol Biochem Parasitol 129:33

    Article  CAS  Google Scholar 

  15. Ramirez BL, Howard OMZ, Dock HF, Edamatsu T, Gao P, Härtlein M, Kron M (2006 in press) J Infect Dis

  16. Kron M, Marquard K, Härtlein M, Price S, Leberman R (1995) FEBS Lett 7374:122

    Article  Google Scholar 

  17. Beaulande M, Tarbouriech N, Härtlein M (1998) Nucleic Acids Res 26:521

    Article  CAS  Google Scholar 

  18. Doucet JP, Weber J (1996) Molecular similarity, in Computer-Aided Molecular Design: Theory and Applications. Academic Press, San Diego, CA p 328

  19. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) J Med Chem 45:2213

    Article  CAS  Google Scholar 

  20. Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA (1998) Proteins 33:74

    Article  CAS  Google Scholar 

  21. Carlson HA, McCammon JA (2000) Mol Pharmacol 57:213

    CAS  Google Scholar 

  22. Knegtel RMA, Kuntz ID, Oshiro CM (1997) J Mol Biol 266:424

    Article  CAS  Google Scholar 

  23. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Proteins 46:34

    Article  CAS  Google Scholar 

  24. Claussen H, Buning C, Rarey M, Lengauer T (2001) J Mol Biol 308:377

    Article  CAS  Google Scholar 

  25. Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, Briggs JM, McCammon JA (2000) J Med Chem 43:2100

    Article  CAS  Google Scholar 

  26. Schnecke V, Kuhn LA (1999) Proc Int Conf Intell Syst Mol Biol 242

  27. Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA (2002) J Comput Aid Mol Des 16:883

    Article  CAS  Google Scholar 

  28. Zavodszky MI, Kuhn LA (2006 in review) Proteins

  29. Zavodszky MI, Kuhn LA (2005) Protein Sci 14:1104

    Article  CAS  Google Scholar 

  30. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Proteins 44:150

    Article  CAS  Google Scholar 

  31. Lei M, Zavodszky MI, Kuhn LA, Thorpe MF (2004) J Comput Chem 25:1133

    Article  CAS  Google Scholar 

  32. Zavodszky MI, Lei M, Thorpe MF, Day AR, Kuhn LA (2004) Proteins 57:243

    Article  CAS  Google Scholar 

  33. Berthet-Colominas C, Crepin T, Haertlein M, Kron M, Cusack S (in preparation)

  34. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905

    Article  CAS  Google Scholar 

  35. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283

    Article  CAS  Google Scholar 

  36. Hess HH, Derr JE (1975) Anal Biochem 63:607

    Article  CAS  Google Scholar 

  37. Baykov AA, Evtushenko OA, Avaeva SM (1988) Anal Biochem 171:266

    Article  CAS  Google Scholar 

  38. Cogan EB, Birrell GB, Griffith OH (1999) Anal Biochem 271:29

    Article  CAS  Google Scholar 

  39. Danel F, Walle C, Kron M, Haertlein M, Cusack S, Page MGP (2004) International Conference on Aminoacyl tRNA Synthetases. Seoul National University, Seoul, Korea, p 115

  40. Schnecke V, Kuhn LA (2000) Perspect Drug Discov 20:171

    Article  CAS  Google Scholar 

  41. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL (2004) J Med Chem 47:3032

    Article  CAS  Google Scholar 

  42. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235

    Article  CAS  Google Scholar 

  43. Halperin I, Ma BY, Wolfson H, Nussinov R (2002) Proteins 47:409

    Article  CAS  Google Scholar 

  44. Stahl M, Rarey M (2001) J Med Chem 44:1035

    Article  CAS  Google Scholar 

  45. Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759

    Article  CAS  Google Scholar 

  46. Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337

    Article  CAS  Google Scholar 

  47. Wang RX, Lai LH, Wang SM (2002) J Comput Aid Mol Des 16:11

    Article  CAS  Google Scholar 

  48. Hespenheide BM, Rader AJ, Thorpe MF, Kuhn LA (2002) J Mol Graph Model 21:195

    Article  CAS  Google Scholar 

  49. Rader AJ, Hespenheide BM, Kuhn LA, Thorpe MF (2002) Proc Natl Acad Sci USA 99:3540

    Article  CAS  Google Scholar 

  50. Taylor R (2002) Acta Crystallogr D 58:879

    Article  Google Scholar 

  51. Ihlenfeldt WD, Voigt JH, Bienfait B, Oellien F, Nicklaus MC (2002) J Chem Inf Comp Sci 42:46

    Article  CAS  Google Scholar 

  52. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliver Rev 46:3

    Article  CAS  Google Scholar 

  53. Perry NB, Ettouati L, Litaudon M, Blunt JW, Munro MHG, Parkin S, Hope H (1994) Tetrahedron 50:3987

    Article  CAS  Google Scholar 

  54. Evers DL, Breitenbach JM, Borysko KZ, Townsend LB, Drach JC (2002) Antimicrob Agents Ch 46:2470

    Article  CAS  Google Scholar 

  55. Gompel M, Leost M, Joffe EBD, Puricelli L, Franco LH, Palermo J, Meijer L (2004) Bioorg Med Chem Lett 14:1703

    Article  CAS  Google Scholar 

  56. Anderson RJ, Morris JC (2001) Tetrahedron Lett 42:8697

    Article  CAS  Google Scholar 

  57. Anderson RJ, Morris JC (2001) Tetrahedron Lett 42:311

    Article  CAS  Google Scholar 

  58. Anderson RJ, Hill JB, Morris JC (2005) J Org Chem 70:6204

    Article  CAS  Google Scholar 

  59. Anderson RJ (2002) Total synthesis of variolin B. PhD Thesis, Department of Chemistry, University of Canterbury, Christchurch, NZ

  60. Marsh LC (2005) Synthetic studies on marine natural products. MSc Thesis, Department of Chemistry, University of Canterbury, Christchurch, NZ

  61. Hill JB (2005) Deoxyvariolins and polymer therapeutics. PhD Thesis, Department of Chemistry, University of Canterbury, Christchurch, NZ

  62. Saffer JD, Glazer RI (1981) Mol Pharmacol 20:211

    CAS  Google Scholar 

  63. Davies LP, Jamieson DD, Baird-Lambert JA, Kazlauskas R (1984) Biochem Pharmacol 33:347

    Article  CAS  Google Scholar 

  64. Recchia I, Rucci N, Festuccia C, Bologna M, MacKay AR, Migliaccio S, Longo M, Susa M, Fabbro D, Teti A (2003) Eur J Cancer 39:1927

    Article  CAS  Google Scholar 

  65. Recchia I, Rucci N, Funari A, Migliaccio S, Taranta A, Longo M, Kneissel M, Susa M, Fabbro D, Teti A (2004) Bone 34:65

    Article  CAS  Google Scholar 

  66. Sadowski J, Gasteiger J (1993) Chem Rev 93:2567

    Article  CAS  Google Scholar 

  67. Allen JG, Danishefsky SJ (2001) J Am Chem Soc 123:351

    Article  CAS  Google Scholar 

  68. Neidle S, Taylor GL, Cowling PC (1979) Acta Crystallogr B 35:708

    Article  Google Scholar 

  69. Freist W, Wiedner H, Cramer F (1980) Bioorg Chem 9:491

    Article  CAS  Google Scholar 

  70. Dhananjeyan MR, Milev YP, Kron MA, Nair MG (2005) J Med Chem 48:2822

    Article  CAS  Google Scholar 

  71. Burnouf C, Pruniaux MP (2002) Curr Pharm Design 8:1255

    Article  CAS  Google Scholar 

  72. Klenke B, Barrett MP, Brun R, Gilbert IH (2003) J Antimicrob Chemother 52:290

    Article  CAS  Google Scholar 

  73. Goble FC (1950) J Pharmacol Exp Ther 98:49

    CAS  Google Scholar 

  74. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Science 252:1682

    Article  CAS  Google Scholar 

  75. Shiba K, Stello T, Motegi H, Noda T, Musier-Forsyth K, Schimmel P (1997) J Biol Chem 272:22,809

    Article  CAS  Google Scholar 

  76. Cusack S, Yaremchuk A, Tukalo M (1996) EMBO J 15:2834

    CAS  Google Scholar 

  77. Burke B, Yang F, Chen F, Stehlin C, Chan B, Musier-Forsyth K (2000) Biochemistry 39:15,540

    Article  CAS  Google Scholar 

  78. Yaremchuk A, Tukalo M, Grøtli M, Cusack S (2001) J Mol Biol 309:989

    Article  CAS  Google Scholar 

  79. Lenhard B, Filipic S, Landeka I, Skrtic I, Soll D, Weygand-Durasevic I (1997) J Biol Chem 272:1136

    Article  CAS  Google Scholar 

  80. Wang P, Vaidehi N, Tirrell DA, Goddard WA (2002) J Am Chem Soc 124:14,442

    CAS  Google Scholar 

  81. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  82. Kim SY, Lee J (2003) Bioorgan Med Chem 11:5325

    Article  CAS  Google Scholar 

  83. Finn J, Mattia K, Morytko M, Ram S, Yang YF, Wu XM, Mak E, Gallant P, Keith D (2003) Bioorg Med Chem Lett 13:2231

    Article  CAS  Google Scholar 

  84. Lee J, Kim SE, Lee JY, Kim SY, Kang SU, Seo SH, Chun MW, Kang T, Choi SY, Kim HO (2003) Bioorg Med Chem Lett 13:1087

    Article  CAS  Google Scholar 

  85. Jarvest RL, Erskine SG, Forrest AK, Fosberry AP, Hibbs MJ, Jones JJ, Oȁ9Hanlon PJ, Sheppard RJ, Worby A (2005) Bioorg Med Chem Lett 15:2305

    Article  CAS  Google Scholar 

  86. Bernier S, Akochy PM, Lapointe J, Chenevert R (2005) Bioorgan Med Chem 13:69

    Article  CAS  Google Scholar 

  87. Cavasotto CN, Abagyan RA (2004) J Mol Biol 337:209

    Article  CAS  Google Scholar 

  88. Gorfe AA, Caflisch A (2005) Structure 13:1487

    Article  CAS  Google Scholar 

  89. Gohlke H, Kuhn LA, Case DA (2004) Proteins 56:322

    Article  CAS  Google Scholar 

  90. Bursavich MG, Rich DH (2002) J Med Chem 45:541

    Article  CAS  Google Scholar 

  91. Finer-Moore JS, Anderson AC, Oȁ9Neil RH, Costi MP, Ferrari S, Krucinski J, Stroud RM (2005) Acta Crystallogr D 61:1320

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Sanschagrin for his initial CSD screening that identified variolin B as an inhibitor, and Dr. Maria Zavodszky for her assistance with ROCK. We also thank NCI for providing us with samples of plated compounds and Dr. Samuel Danishefsky for providing us with rishirilide B. Drs. Holger Gohlke and Gerhard Klebe, Dr. Shaomeng Wang, and OpenEye Scientific Software (Santa Fe, NM) generously provided their DrugScore, X-Score, and Omega software for our use. This work was supported by NIH grants GM 67249 to L.A.K. and U01 AI53877 to M.A.K., S.C., M.G.P.P., F.D., and L.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukuru, S.C.K., Crepin, T., Milev, Y. et al. Discovering New Classes of Brugia malayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change. J Comput Aided Mol Des 20, 159–178 (2006). https://doi.org/10.1007/s10822-006-9043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9043-5

Key words

Navigation