Skip to main content
Log in

Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these “random” methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) J Med Chem 37(9):1233–1251

    CAS  Google Scholar 

  2. Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) J Med Chem 37(10):1385–1401

    CAS  Google Scholar 

  3. Czarnick AW (1996) Acc Chem Res 29(3):112–113

    Google Scholar 

  4. Beroza PP, Feinstein R, Greene J, Goldman B, Mount J, Smellie A (1999) The design of maximum information libraries as a highly efficient tool for lead generation. Theory and methods. presentation at acs national meeting, anaheim, ca., CombiChem, Inc., Palo Alto, CA

  5. Bradley EK, Beroza P, Eksterowicz J, Genin H, Grootenhuis P, Miller D, Miller J, Penzotti J, Shirley W, Spellmeyer D, Srinivasan J, Stanton R (1999) The design of maximum information libraries as a highly efficient tool for lead generation. Application of the method. presentation at acs national meeting, anaheim, ca., CombiChem, Inc., Palo Alto, CA

  6. Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJA, Sun Y, Kuntz ID, Ellman JA (1997) Chem Biol 4:297–307

    CAS  Google Scholar 

  7. Kubinyi H (1998) Curr Op Drug Disco Devl 1(1):16–27

    CAS  Google Scholar 

  8. Murray CM, Cato SJ (1999) J Chem Inf Comput Sci 39(1):46–50

    CAS  Google Scholar 

  9. Tondi D, Slomczynska U, Costi MP, Watterson DM, Ghelli S, Shoichet BK (1999) Chem Biol 6(5):319–331

    CAS  Google Scholar 

  10. Martin EJ, Critchlow RE (1999) J Comb Chem 1(1):32–45

    CAS  Google Scholar 

  11. Koehler RT, Dixon SL, Villar HO (1999) J Med Chem 42(22):4695–4704

    CAS  Google Scholar 

  12. Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF (1999) JMC 42(18):3557–3571

    Google Scholar 

  13. Miranker A, Karplus M (1991) Proteins 11(1):29–34

    CAS  Google Scholar 

  14. Evensen E, Joseph-McCarthy D, Karplus M (1997) MCSS version 2.1. Harvard University, Cambridge, MA, USA

    Google Scholar 

  15. Caflisch A, Miranker A, Karplus M (1993) J Med Chem 36(15):2142–2167

    CAS  Google Scholar 

  16. Caflisch A (1996) J Comput-Aided Mol Des 10(5):372–396

    CAS  Google Scholar 

  17. Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) Proteins 19:199–221

    CAS  Google Scholar 

  18. Miranker A, Karplus M (1995) Proteins: Structure, Function, and Genetics 23:472–490

    CAS  Google Scholar 

  19. Bohacek RS, McMartin C (1994) J Am Chem Soc 116:5560–5571

    CAS  Google Scholar 

  20. Ripka AS, Satyshur KA, Bohacek RS, Rich DH (2001) Org Lett 3:2309–2313

    CAS  Google Scholar 

  21. Grzybowski BA, Ishchenko AV, Kim C-Y, Topalov G, Chapman R, Christianson DW, Whitesides GM, Shakhnovich EI (2002) Proc Nat Acad Sci 99:1270–1273

    CAS  Google Scholar 

  22. Firth-Clark S, Willems HMG, Williams A, Harris W (2006) J Chem Inf Model 46:642–647

    CAS  Google Scholar 

  23. Joseph-McCarthy D, Tsang SK, Filman DJ, Hogle JM, Karplus M (2001) J Am Chem Soc 123:12758–12769

    CAS  Google Scholar 

  24. Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF (1999) J Med Chem 42:3251–3264

    CAS  Google Scholar 

  25. Mason JS, Cheney DL (2000) Pac Symp Biocomput 5:573–584

    Google Scholar 

  26. Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PDJ, Blaney JM (2002) J Mol Graph Model 20:469–477

    CAS  Google Scholar 

  27. Evensen E, Eksterowicz JE, Stanton RV, Oshiro C, Grootenhuis PDJ, Bradley EK (2003) J Med Chem 46:5125–5128

    CAS  Google Scholar 

  28. Deng Z, Chuaqui C, Singh J (2006) J Med Chem 49:490–500

    CAS  Google Scholar 

  29. Joseph-McCarthy D, Alvarez JC (2003) Proteins 51:189–202

    CAS  Google Scholar 

  30. Hajduk PJ, Meadows RP, Fesik SW (1999) Q Rev Biophys 32:211–240

    CAS  Google Scholar 

  31. Petros AM, Dignes J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) J Med Chem 49:656–663

    CAS  Google Scholar 

  32. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) Nat Biotechnol 23:201–207

    CAS  Google Scholar 

  33. Gill A, Cleasby A, Jhoti H (2005) Chembiochem 6:506–512

    CAS  Google Scholar 

  34. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403–413

    CAS  Google Scholar 

  35. Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463–3482

    CAS  Google Scholar 

  36. Erlanson DA (2006) Curr Opin Biotechnol 17:643–652

    CAS  Google Scholar 

  37. Hammer J, Gallazi F, Bono E, Karr RW, Guenot J, Valasnini P, Nagy ZA, Sinigaglia F (1995) J Exp Med 181:1847–1855

    CAS  Google Scholar 

  38. Wucherpfennig KW, Strominger JL (1995) J Exp Med 181:1597–1601

    CAS  Google Scholar 

  39. Czaja AJ (2005) Ann Hepatol 4:6–24

    CAS  Google Scholar 

  40. Janeway CA Jr, Travers P (1996) Immunobiology: The Immune System in Health and Disease. Garland Publishing Inc., New York, NY

    Google Scholar 

  41. Powis SH, Geraghty DE (1995) Immunol Today 16:466–468

    CAS  Google Scholar 

  42. Campbell RD, Trowsdale J (1993) Immunol Today 14:349–352

    CAS  Google Scholar 

  43. Nepom GT, Erlich H (1991) Annu Rev Immunol 9:493–525

    CAS  Google Scholar 

  44. Theofilopoulos AN (1995) Immunol Today 16:90–98

    CAS  Google Scholar 

  45. Theofilopoulos AN (1995) Immunol Today 16:150–158

    CAS  Google Scholar 

  46. Mueller DL, Jenkins MK (1997) Curr Biol 7:R255–R257

    CAS  Google Scholar 

  47. Wong FS, Wen L (2003) Curr Mol Med 3:1–15

    CAS  Google Scholar 

  48. Larsen CE, Alper CA (2004) Curr Opin Immunol 16:660–667

    CAS  Google Scholar 

  49. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA (2005) EMBO J 24:2968–2979

    CAS  Google Scholar 

  50. George AJT, Ritter MA, Lechler RI (1995) Immunol Today 16:209–211

    CAS  Google Scholar 

  51. Wilkinson AJ (1996) Chem Biol 3:519–524

    CAS  Google Scholar 

  52. Abbas AK, Lichtman AH, Pober JS (1997) Cellular and Molecular Immunology, 3rd ed. Saunders, Philadelphia, PA, USA

    Google Scholar 

  53. Stern LJ, Wiley DC (1994) Structure 2(4):245–251

    CAS  Google Scholar 

  54. Madden DR, Gorga JC, Strominger JL, Wiley DC (1991) Nature 353:321–325

    CAS  Google Scholar 

  55. Madden DR, Garboczi DN, Wiley DC (1993) Cell 75:693–708

    CAS  Google Scholar 

  56. Garrett TPJ, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC (1989) Nature 342:692–696

    CAS  Google Scholar 

  57. Gou H-C, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL, Wiley DC (1993) Proc Natl Acad Sci USA 90:8053–8057

    Google Scholar 

  58. Sette A, Sidney J, Oseroff C, del Guercio M-F, Southwood S, Arrhenius T, Powell MF, Colón SM, Gaeta FCA, Grey HM (1993) J Immunol 151(6):3163–3170

    CAS  Google Scholar 

  59. Rognan D, Krebs S, Kuonen O, Lamas JR, López de Castro JA, Folkers G (1997) JCAMD 11:463–478

    CAS  Google Scholar 

  60. Ghosh P, Amaya M, Mellins E, Wiley DC (1995) Nature 378:457–462

    CAS  Google Scholar 

  61. Humphrey WF, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    CAS  Google Scholar 

  62. POV-Team. http://www.povray.org

  63. Almagro JC, Vargas-Madrazo E, Lara-Ochoa F, Horjales E (1995) Prot Sci 4:1708–1717

    Article  CAS  Google Scholar 

  64. Sant’Angelo DB, Waterbury G, Preston-Hurlburt P, Yoon ST, Medzhitov R, Hong S-C, Janeway CA Jr (1996) Immunity 4:367–376

    Google Scholar 

  65. Garbozci DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Nature 384:134–141

    Google Scholar 

  66. Vasmatzis G, Cornette J, Sezerman U, DeLisi C (1996) J Mol Biol 261:72–89

    CAS  Google Scholar 

  67. Bouvier M, Wiley DC (1994) Science 265:398–402

    CAS  Google Scholar 

  68. Cresswell P (1996) Cell 84:505–507

    CAS  Google Scholar 

  69. Jensen PE, Weber DA, Thayer WP, Westerman LE, Dao CT (1999) Immunol Rev 172:229–238

    CAS  Google Scholar 

  70. Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED (2005) Immunol Rev 207:242–260

    CAS  Google Scholar 

  71. Malcherek G, Falk K, Rötzschke O, Rammensee H-G, Stevanovic S, Gnau V, Jung G, Melms A (1993) Int Immunol 5(10):1229–1237

    CAS  Google Scholar 

  72. Falcioni F, Ito K, Vidovic D, Belunis C, Campbell R, Berthel SJ, Bolin DR, Gillespie PB, Huby N, Olson GL, Sarabu R, Guenot J, Madison V, Hammer J, Sinigaglia F, Steinmetz M, Nagy ZA (1999) Nature Biotech 17:562–561

    CAS  Google Scholar 

  73. Eldor R, Cohen IR, Raz I (2005) Int Rev Immunol 24:327–339

    CAS  Google Scholar 

  74. Haque A, Blum JS (2005) J Biol Regul Homeost Agents 19:93–104

    CAS  Google Scholar 

  75. Dzhambazov B, Nandakumar KS, Kihlberg J, Fugger L, Holmdahl R, Vestberg M (2006) J Immunol 176:1525–1533

    CAS  Google Scholar 

  76. Smith AB III, Benowitz AB, Guzman MC, Sprengeler PA, Hirschmann R, Schweiger EJ, Bolin DR, Nagy Z, Campbell RM, Cox DC, Olson GL (1998) J Am Chem Soc 120:12704–12705

    CAS  Google Scholar 

  77. Smith AB III, Benowitz AB, Sprengeler PA, Barbosa J, Guzman MA, Hirschmann R, Schweiger EJ, Bolin DR, Nagy Z, Campbell RM, Cox DC, Olson GL (1999) J Am Chem Soc 121:9286–9298

    CAS  Google Scholar 

  78. Woulfe SL, Bono CP, Zacheis ML, Welply JK, Kirschmann DA, Baudino TA, Wang Y, Stone DA, Hanson GJ, Vuletich JL, Bedell LJ, Schwartz BD, Howard SC (1997) J Pharm Expt Therapeutics 281:663– 669

    CAS  Google Scholar 

  79. Bolin DR, Swain AL, Sarabu R, Berthel SJ, Gillespie P, Huby NJS, Makofske R, Orzechowski L, Perrotta A, Toth K, Cooper JP, Jiang N, Falcioni F, Campbell R, Cox D, Gaizband D, Belunis CJ, Vidovic D, Ito K, Crowther R, Kammlott U, Zhang X, Palermo R, Weber D, Guenot J, Nagy Z, Olson GL (2000) J Med Chem 43:2135–2148

    Google Scholar 

  80. Dedier S, Krebs S, Lamas JR, Poenaru S, Folkers G, Lopez de Casto JA, Seebach D, Rognan D (1999) J Recept Signal Transduction Res 19:645–657

    CAS  Google Scholar 

  81. Madurga S, Belda I, Llorà X, Giralt E (2005) Protein Sci 14:2069–2079

    CAS  Google Scholar 

  82. Dessen A, Lawrence MC, Cupo S, Zaller DM, Wiley DC (1997) Immunity 7:473–481

    CAS  Google Scholar 

  83. Brünger AT, Karplus M (1988) Proteins 4:148–156

    Google Scholar 

  84. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217

    CAS  Google Scholar 

  85. MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) In: Schleyer PvR et al (eds) The encyclopedia of computational chemistry, vol 1. John Wiley & Sons, Chichester, pp 271–277

    Google Scholar 

  86. Libes D (1995) Exploring Expect: A Tcl-Based Toolkit for Automating Interactive Programs. O’Reilly & Associates Inc., Sebastopol, CA, USA

    Google Scholar 

  87. Ousterhout JK (1994) Tcl and the Tk toolkit. Addison-Wesley Publishing Company, Reading, MA, USA

    Google Scholar 

  88. Elber R, Karplus M (1990) J Am Chem Soc 112:9161–9175

    CAS  Google Scholar 

  89. Tidor B, Karplus M (1991) Biochemistry 30:3217–3228

    CAS  Google Scholar 

  90. Stultz CM, Karplus M (1999) Proteins 37(4):512–529

    CAS  Google Scholar 

  91. Karpen ME, Tobias DJ, Brooks CL III (1993) Biochemistry 32:412–420

    CAS  Google Scholar 

  92. Caflisch A, Karplus M (1995) Persp Drug Discov Des 3:51–84

    CAS  Google Scholar 

  93. Viswanadhan VN, Ghose AK, Chandra Singh U, Wendoloski JJ (1999) J Chem Inf Comput Sci 39:405–412

    CAS  Google Scholar 

  94. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988

    CAS  Google Scholar 

  95. Cabani S, Gianni P, Mollica V, Lepori L (1981) J Sol Chem 10(8):563–595

    CAS  Google Scholar 

  96. Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473

    CAS  Google Scholar 

  97. Jorgensen WL, Gao J (1986) J Phys Chem 90:2174–2182

    CAS  Google Scholar 

  98. Kubo MM, Gallicchio E, Levy RM (1997) J Phys Chem B 101:10527–10534

    CAS  Google Scholar 

  99. Della Gatta G, Barone G, Elia G (1986) J Sol Chem 15(2):157–167

    CAS  Google Scholar 

  100. Dec SF, Gill SJ (1984) J Sol Chem 13(1):27–41

    CAS  Google Scholar 

  101. Mestres J, Rohrer DC, Maggiora GM (1997) J Mol Graphics Mod 15:114–121

    CAS  Google Scholar 

  102. Chapman D (1996) J Comp Aided Mol Des 10:501–512

    CAS  Google Scholar 

  103. Cunningham BR, Rivetna M, Tolman RL, Flattery SJ, Nichols A, Elizabeth, Schwartz CD, Wicker LS, Hermes JD, Jones AB (1997) Bioorg Med Chem Lett 7(1):19–24

    CAS  Google Scholar 

  104. Halgren TA (1996) J Comp Chem17(5–6):490–519

    CAS  Google Scholar 

  105. Furka Á, Sebestyén F, Asgedom M, Dibó G (1991) Int J Peptide Protein Res 37:487–493

    Article  CAS  Google Scholar 

  106. Combs AP, Kapoor TM, Feng S, Chen JK, Daudé-Snow L, Schreiber SL (1996) J Am Chem Soc 118:287–288

    CAS  Google Scholar 

  107. Morken JP, Kapoor TM, Feng S, Shirai F, Schreiber SL (1998) J Am Chem Soc 120:30–36

    CAS  Google Scholar 

  108. Kozono H, White J, Clements J, Marrack P, Kappler J (1994) Nature 369:151–154

    CAS  Google Scholar 

  109. Wallace AC, Laskowski RA, Thornton JM (1995) Prot Eng 8:127–134

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diane Joseph-McCarthy or Martin Karplus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evensen, E., Joseph-McCarthy, D., Weiss, G.A. et al. Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4. J Comput Aided Mol Des 21, 395–418 (2007). https://doi.org/10.1007/s10822-007-9119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9119-x

Keywords

Navigation