Skip to main content

Advertisement

Log in

Molecular dynamics studies of α-helix stability in fibril-forming peptides

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Diseases associated with protein fibril-formation, such as the prion diseases and Alzheimer’s disease, are gaining increased attention due to their medical importance and complex origins. Using molecular dynamics (MD) simulations in an aqueous environment, we have studied the stability of the α-helix covering positions 15–25 of the amyloid β-peptide (Aβ) involved in Alzheimer’s disease. The effects of residue replacements, including the effects of Aβ disease related mutations, were also investigated. The MD simulations show a very early (2 ns) loss of α-helical structure for the Flemish (Aβ(A21G)), Italian (Aβ(E22K)), and Iowa (Aβ(D23N)) forms associated with hereditary Alzheimer’s disease. Similarly, an early (5 ns) loss of α-helical structure was observed for the Dutch (Aβ(E22Q)) variant. MD here provides a possible explanation for the structural changes. Two variants of Aβ, Aβ(K16A,L17A,F20A) and Aβ(V18A,F19A,F20A), that do not produce fibrils in vitro were also investigated. The Aβ(V18A,F19A,F20A) initially loses its helical conformation but refolds into helix several times and spends most of the simulation time in helical conformation. However, the Aβ(K16A,L17A,F20A) loses the α-helical structure after 5 ns and does not refold. For the wildtype Aβ(1–40) and Aβ(1–42), the helical conformation is lost after 5 ns or after 40 ns, respectively, while for the “familial” (Aβ(A42T)) variant, the MD simulations suggest that a C-terminal β-strand is stabilised, which could explain the fibrillation. The simulations for the Arctic (Aβ(E22G)) variant indicate that the α-helix is kept for 2 ns, but reappears 2 ns later, whereafter it disappears after 10 ns. The MD results are in several cases compatible with known experimental data, but the correlation is not perfect, indicating that multimerisation tendency and other factors might also be important for fibril formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β-peptide

MD:

Molecular dynamics

References

  1. Jackson GS, Collinge J (2001) Mol Pathol 54:393

    CAS  Google Scholar 

  2. Westermark P (2005) FEBS J 272:5942

    Article  CAS  Google Scholar 

  3. Nelson R, Eisenberg D (2006) Curr Opin Struct Biol 16:260

    Article  CAS  Google Scholar 

  4. Lorenzo A, Yankner BA (1996) Ann NY Acad Sci 777:89

    Article  CAS  Google Scholar 

  5. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Proc Natl Acad Sci USA 95:6448

    Article  CAS  Google Scholar 

  6. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) Biochemistry 39:10831

    Article  CAS  Google Scholar 

  7. Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K, Takahashi K, Gallyas F, Tabira T (1999) Nat Med 5:560

    Article  CAS  Google Scholar 

  8. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) Nature 440:352

    Article  CAS  Google Scholar 

  9. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Nature 416:507

    Article  CAS  Google Scholar 

  10. Monji A, Utsumi H, Ueda T, Imoto T, Yoshida I, Hashioka S, Tashiro K, Tashiro N (2001) J Neurochem 77:1425

    Article  CAS  Google Scholar 

  11. Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) J Biol Chem 276:12945

    Article  CAS  Google Scholar 

  12. Soto C, Castano EM, Frangione B, Inestrosa NC (1995) J Biol Chem 270:3063

    Article  CAS  Google Scholar 

  13. Tjernberg LO, Naslund J, Lindqvist F, Johansson J, Karlstrom AR, Thyberg J, Terenius L, Nordstedt C (1996) J Biol Chem 271:8545

    Article  CAS  Google Scholar 

  14. Paivio A, Nordling E, Kallberg Y, Thyberg J, Johansson J (2004) Protein Sci 13:1251

    Article  Google Scholar 

  15. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GTAM, Luyendijk W, Frangione B (1990) Science 248:1124

    Article  CAS  Google Scholar 

  16. Miravalle L, Tokuda T, Chiarle R, Giaccone G, Bugiani O, Tagliavini F, Frangione B, Ghiso J (2000) J Biol Chem 275:27110

    CAS  Google Scholar 

  17. Grabowski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM (2001) Ann Neurol 49:697

    Article  CAS  Google Scholar 

  18. van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW (2001) J Biol Chem 276:32860

    Article  Google Scholar 

  19. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin J-J, Hofman A, Van Broeckhoven C (1992) Nat Genet 1:218

    Article  CAS  Google Scholar 

  20. Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM, Anderson L, O’dahl S, Nemens E, White JA, Sadovnick AD, Ball MJ, Kaye J, Warren A, McInnis M, Antonarakis SE, Korenberg JR, Sharma V, Kukull W, Larson E, Heston LL, Martin GM, Bird TD, Schellenberg GD (1992) Am J Hum Genet 51:998

    CAS  Google Scholar 

  21. Cheng IH, Palop JJ, Esposito LA, Bien-Ly N, Yan F, Mucke L (2004) Nat Med 10:1190

    Article  CAS  Google Scholar 

  22. Carter DA, Desmarais E, Bellis M, Campion D, Clerget-Darpoux F, Brice A, Agid Y, Jaillard-Serradt A, Mallet J (1992) Nat Genet 2:255

    Article  CAS  Google Scholar 

  23. Rossi G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M, Giovagnoli AR, Bizzi A, Tomaino C, Perri M, Di Natale M, Tagliavini F, Bugiani O, Bruni AC (2004) Neurology 63:910

    CAS  Google Scholar 

  24. Watson AA, Fairlie DP, Craik DJ (1998) Biochemistry 37:12700

    Article  CAS  Google Scholar 

  25. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306

    CAS  Google Scholar 

  26. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Chem Phys B 105:6474

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  28. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  29. Kabsch W, Sander C (1983) Biopolymers 22:2577

    Article  CAS  Google Scholar 

  30. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Nucleic Acids Res 31:3784

    Article  CAS  Google Scholar 

  31. Riek R, Guntert P, Dobeli H, Wipf B, Wuthrich K (2001) Eur J Biochem 268:5930

    Article  CAS  Google Scholar 

  32. Serpell LC (2000) Biochim Biophys Acta 1502:16

    CAS  Google Scholar 

  33. Chen YR, Glabe CG (2006) J Biol Chem 281:24414

    Article  CAS  Google Scholar 

  34. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) Proc Natl Acad Sci USA 102:17342

    Article  Google Scholar 

  35. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Nature 424:805

    Article  CAS  Google Scholar 

  36. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2003) J Biol Chem 278:46179

    Article  CAS  Google Scholar 

  37. Gordon DJ, Sciarretta KL, Meredith SC (2001) Biochemistry 40:8237

    Article  CAS  Google Scholar 

  38. Watanabe K, Nakamura K, Akikusa S, Okada T, Kodaka M, Konakahara T, Okuno H (2002) Biochem Biophys Res Commun 290:121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Swedish Research Council, the Swedish Foundation for Strategic Research, Linköping University and Karolinska Institutet Funds is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Nordling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordling, E., Kallberg, Y., Johansson, J. et al. Molecular dynamics studies of α-helix stability in fibril-forming peptides. J Comput Aided Mol Des 22, 53–58 (2008). https://doi.org/10.1007/s10822-007-9155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9155-6

Keywords

Navigation