Skip to main content
Log in

An improved scoring function for suboptimal polar ligand complexes

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Learning strategies can be used to improve the efficiency of virtual screening of very large databases. In these strategies new compounds to be screened are selected on the basis of the results obtained in previous stages, even if truly good ligands have not yet been identified. This approach requires that the scoring function used correctly predicts the energy and geometry of suboptimal complexes, i.e. weak complexes that are not the final solution of the screening but help direct the search toward the most productive regions of chemical space. We show that a small modification in the treatment of the solvation of polar atoms corrects the tendency of the original Autodock 3.0 scoring function to bury ligand polar atoms away from solvent, even if no complementary groups are present in the target and improves the performance of Autodock 3.0 and 4.0 in reproducing the experimental docking energies of weak complexes, resembling the suboptimal complexes encountered in the intermediate stages of virtual screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Walters WP, Sthal MT, Murcko MA (1998) Drug Discov Today 3:160. doi:10.1016/S1359-6446(97)01163-X

    Article  CAS  Google Scholar 

  2. Seifert MHJ, Wolf K, Vitt D (2003) BIOSILICO 1:143. doi:10.1016/S1478-5382(03)02359-X

    Article  CAS  Google Scholar 

  3. Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Drug Discov Today 9:27. doi:10.1016/S1359-6446(04)02939-3

    Article  CAS  Google Scholar 

  4. Mestres J (2002) Biochem Soc Trans 30:797. doi:10.1042/BST0300797

    Article  CAS  Google Scholar 

  5. Jones G (1998) Encyclopedia of computational chemistry: genetic and evolutionary algorithms. Wiley Publisher, Chichester

    Google Scholar 

  6. Vidal D, Thormann M, Pons M (2006) J Chem Inf Model 46:836. doi:10.1021/ci050458q

    Article  CAS  Google Scholar 

  7. Barbosa F, Horvath D (2004) Curr Top Med Chem 4:589. doi:10.2174/1568026043451186

    Article  CAS  Google Scholar 

  8. Shanmugasundaram V, Maggiora GM, Lajiness MS (2005) J Med Chem 48:240. doi:10.1021/jm0493515

    Article  CAS  Google Scholar 

  9. Warmuth MK, Liao J, Rätsch G, Mathieson M, Putta S, Lemmen C (2003) J Chem Inf Comput Sci 43:667. doi:10.1021/ci025620t

    CAS  Google Scholar 

  10. Morris GM, Goodsell DS, Halliday SR, Huey R, Hart WE, Belew RK et al (1998) J Comput Chem 19:1639. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  11. Sousa SF, Fernandes PA, Ramos MJ (2006) Proteins 65:15. doi:10.1002/prot.21082

    Article  CAS  Google Scholar 

  12. Vidal D, Thormann M, Pons M (2005) J Chem Inf Model 45:386. doi:10.1021/ci0496797

    Article  CAS  Google Scholar 

  13. Thormann M, Pons M (2001) J Comput Chem 22:1971. doi:10.1002/jcc.1146

    Article  CAS  Google Scholar 

  14. Hetényi C, Paragi G, Maran U, Timár Z, Karelson M, Penke B (2006) J Am Chem Soc 128:1233. doi:10.1021/ja055804z

    Article  Google Scholar 

  15. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145. doi:10.1002/jcc.20634

    Article  CAS  Google Scholar 

  16. Stouten PFW, Frömmel C, Nakamura H, Sander C (1993) Mol Simul 10:97. doi:10.1080/08927029308022161

    Article  CAS  Google Scholar 

  17. Block P, Sotriffer CA, Dramburg I, Klebe G (2006) Nucleic Acids Res 34:D522. doi:10.1093/nar/gkj039

    Article  CAS  Google Scholar 

  18. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35:D198. doi:10.1093/nar/gkl999

    Article  CAS  Google Scholar 

  19. AffinDB is freely accessible at http://www.agklebe.de/affinity. Accessed Jan 2005

  20. Barbault F, Zhang L, Fan BT (2006) Chemom Intell Lab Syst 82:269. doi:10.1016/j.chemolab.2005.05.014

    Article  CAS  Google Scholar 

  21. ChemAxon Ltd Budapest, Hungary. http://www.chemaxon.com. Accessed Jan 2005

  22. Gerber PR MOLOC—a molecular design software suite. http://www.moloc.ch. Accessed Jan 2005

Download references

Acknowledgments

This work has been supported by funds from the Spanish Ministerio de Educación y Ciencia-FEDER BIO2004-5436 and BIO2007-63458 and the Generalitat de Catalunya. DV and GC gratefully acknowledge predoctoral grants from the Spanish Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Pons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cincilla, G., Vidal, D. & Pons, M. An improved scoring function for suboptimal polar ligand complexes. J Comput Aided Mol Des 23, 143–152 (2009). https://doi.org/10.1007/s10822-008-9246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9246-z

Keywords

Navigation