Skip to main content
Log in

Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 Å respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Makishima M, Okamoto AY, Repa JJ et al (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365. doi:10.1126/science.284.5418.1362

    Article  CAS  Google Scholar 

  2. Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526. doi:10.1016/S1097-2765(00)00051-4

    Article  CAS  Google Scholar 

  3. Feng S, Yang M, Zhang Z et al (2009) Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist. Bioorg Med Chem Lett 19:2595–2598. doi:10.1016/j.bmcl.2009.03.008

    Article  CAS  Google Scholar 

  4. Gao Y, Hu Y, Crespo A et al (2017) Workflows and performances in the ranking prediction of the 2016 Grand Challenge 2: lessons learned from a collaborative effort. J Comput Aided Mol Des (in press)

  5. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3:160–178. doi:10.1016/S1359-6446(97)01163-X

    Article  CAS  Google Scholar 

  6. Tanrikulu Y, Krüger B, Proschak E (2013) The holistic integration of virtual screening in drug discovery. Drug Discov Today 18:358–364. doi:10.1016/j.drudis.2013.01.007

    Article  Google Scholar 

  7. Kumar A, Zhang KYJ (2015) Hierarchical virtual screening approaches in small molecule drug discovery. Methods 71:26–37. doi:10.1016/j.ymeth.2014.07.007

    Article  CAS  Google Scholar 

  8. Verkhivker GM, Bouzida D, Gehlhaar DK et al (2000) Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des 14:731–751. doi:10.1023/A:1008158231558

    Article  CAS  Google Scholar 

  9. Osterberg F, Morris GM, Sanner MF et al (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40

    Article  CAS  Google Scholar 

  10. Huang S-Y, Zou X (2007) Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins Struct Funct Bioinform 66:399–421. doi:10.1002/prot.21214

    Article  CAS  Google Scholar 

  11. Ellingson SR, Miao Y, Baudry J, Smith JC (2015) Multi-conformer ensemble docking to difficult protein targets. J Phys Chem B 119:1026–1034. doi:10.1021/jp506511p

    Article  CAS  Google Scholar 

  12. Ruvinsky AM, Kozintsev AV (2006) Novel statistical-thermodynamic methods to predict protein-ligand binding positions using probability distribution functions. Proteins 62:202–208. doi:10.1002/prot.20673

    Article  CAS  Google Scholar 

  13. Ruvinsky AM, Kozintsev AV (2005) New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy. J Comput Chem 26:1089–1095. doi:10.1002/jcc.20246

    Article  CAS  Google Scholar 

  14. Ruvinsky AM (2007) Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions. J Comput Chem 28:1364–1372. doi: 10.1002/jcc.20580

    Article  CAS  Google Scholar 

  15. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  16. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  17. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26

    Article  CAS  Google Scholar 

  18. Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14. doi:10.1016/j.ejmech.2014.08.004

    Article  CAS  Google Scholar 

  19. Bharatham N, Finch KE, Min J et al (2017) Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx. J Mol Graph Model 74:54–60. doi:10.1016/j.jmgm.2017.02.014

    Article  CAS  Google Scholar 

  20. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31:201–211. doi:10.1007/s10822-016-0005-2

    Article  CAS  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  22. Kleywegt GJ (1996) Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr 52:842–857. doi:10.1107/S0907444995016477

    Article  CAS  Google Scholar 

  23. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. doi:10.1007/s10822-013-9644-8

    Article  Google Scholar 

  24. Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. doi:10.1007/s10822-007-9133-z

    Article  CAS  Google Scholar 

  25. Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50:572–584. doi:10.1021/ci100031x

    Article  CAS  Google Scholar 

  26. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82. doi:10.1021/jm0603365

    Article  CAS  Google Scholar 

  27. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi: 10.1002/jcc.20290

    Article  CAS  Google Scholar 

  28. (2017) Molecular operating environment (MOE). Chemical Computing Group Inc., Montreal

  29. (2016) Pipeline pilot. Dassault Systèmes BIOVIA, San Diego

  30. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  Google Scholar 

  31. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. doi:10.1021/jm050540c

    Article  CAS  Google Scholar 

  32. Bowers K, Chow E, Xu H et al (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proc. ACMIEEE Conf. Supercomput. SC06

  33. Verdonk ML, Mortenson PN, Hall RJ et al (2008) Protein—ligand docking against non-native protein conformers. J Chem Inf Model 48:2214–2225. doi:10.1021/ci8002254

    Article  CAS  Google Scholar 

  34. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Exp Opin Drug Discov 10:449–461. doi:10.1517/17460441.2015.1032936

    Article  CAS  Google Scholar 

  35. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 394:383–394. doi:10.1002/prot.20033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Fradera or Andreas Verras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fradera, X., Verras, A., Hu, Y. et al. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016. J Comput Aided Mol Des 32, 113–127 (2018). https://doi.org/10.1007/s10822-017-0053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0053-2

Keywords

Navigation