Skip to main content
Log in

Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Electrical synapses continuously transfer signals bi-directionally from one cell to another, directly or indirectly via intermediate cells. Electrical synapses are common in many brain structures such as the inferior olive, the subcoeruleus nucleus and the neocortex, between neurons and between glial cells. In the cortex, interneurons have been shown to be electrically coupled and proposed to participate in large, continuous cortical syncytia, as opposed to smaller spatial domains of electrically coupled cells. However, to explore the significance of these findings it is imperative to map the electrical synaptic microcircuits, in analogy with in vitro studies on monosynaptic and disynaptic chemical coupling. Since “walking” from cell to cell over large distances with a glass pipette is challenging, microinjection of (fluorescent) dyes diffusing through gap-junctions remains so far the only method available to decipher such microcircuits even though technical limitations exist. Based on circuit theory, we derive analytical descriptions of the AC electrical coupling in networks of isopotential cells. We then suggest an operative electrophysiological protocol to distinguish between direct electrical connections and connections involving one or more intermediate cells. This method allows inferring the number of intermediate cells, generalizing the conventional coupling coefficient, which provides limited information. We validate our method through computer simulations, theoretical and numerical methods and electrophysiological paired recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amitai, Y., Gibson, J. R., Beierlein, M., Patrick, S. L., Ho, A. M., Connors, B. W., et al. (2002). The spatial dimensions of electrically coupled networks of interneurons in the neocortex. Journal of Neuroscience, 22(10), 4142–4152.

    PubMed  CAS  Google Scholar 

  • Atkinson, D., & van Steenwijk, F. J. (1999). Infinite resistive lattices. The American Journal of Physics, 67, 486–492.

    Article  Google Scholar 

  • Beierlein, M., Gibson, J. R., & Connors, B. W. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience, 3(9), 904–910.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41, 495–511.

    Article  PubMed  CAS  Google Scholar 

  • Bollobás, B. (2001). Random graphs (2nd ed.). Cambridge: Cambridge University Press.

  • Brogan, W. L. (1991). Modern control theory. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cossart, R., Petanjek, Z., Dumitriu, D., Hirsch, J., Ben-Ari, Y., Esclapez, M. et al. (2006). Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus, 16, 408–420.

    Article  PubMed  Google Scholar 

  • Davie, J. T., Kole, M. H., Letzkus, J. J., Rancz, E. A., Spruston, N., Stuart, G. J. et al. (2007). Dendritic patch-clamp recording. Nature Protocols, 1(3), 1235–1247.

    Article  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Djurisic, M., Antic, S., Chen, W. R., & Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. The Journal of Neuroscience, 24(30), 6703–6714.

    Article  PubMed  CAS  Google Scholar 

  • Dumitriu, D., Cossart, R., Huang, J., & Yuste, R. (2007). Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cerebral Cortex, 17(1), 81–91.

    Article  Google Scholar 

  • Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S., & Luhmann, H. J. (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439(7072), 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B., Wang, J. W., Flores, J., & Gelperin, A. (2004). Model for transition from waves to synchrony in the olfactory lobe of limax. Journal of Computational Neuroscience, 17(3), 365–383.

    Article  PubMed  Google Scholar 

  • Feynman, R. (1964). Lectures on physics. (Vol 2, Chap 22) Reading, MA: Addison-Wesley.

    Google Scholar 

  • Galarreta, M., & Hestrin, S. (2001). Electrical synapses between GABA-releasing interneurons. Nature Reviews Neuroscience, 2(6), 425–433.

    Google Scholar 

  • Gao, J., & Holmes, P. (2006). On the dynamics of electrically-coupled neurons with inhibitory synapses. Journal of Computational Neuroscience, 22(1), 39–61.

    Article  PubMed  CAS  Google Scholar 

  • Gielen, G., Wambacq, P., & Sansen, W. M. (1994). Symbolic analysis methods and applications for analog circuits: A tutorial overview. Proceedings of IEEE, 82(2), 287–304.

    Article  Google Scholar 

  • Hestrin, S., & Galarreta, M. (2005). Electrical synapses define networks of neocortical GABAergic neurons. Trends in Neurosciences, 28(6), 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H., & Bruzzone, R. (2004). Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochimica et Biophysica Acta, 1662(1–2), 113–137.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, P., & Hill, W. (1989). The art of electronics (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hoshi, H., O’Brien, J., & Mills, S. L. (2006). A novel fluorescent tracer for visualizing coupled cells in neural circuits of living tissue. The Journal of Histochemistry and Cytochemistry, 54, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S. M., Raine, L., & Fanger, H. (1981) Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. The Journal of Histochemistry and Cytochemistry, 29(4), 577–580.

    PubMed  CAS  Google Scholar 

  • Hunt, A. G. (2001). AC hopping conduction: Perspective from percolation theory. Philosophical Magazine B, 81, 875–913.

    Article  CAS  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23(5), 216–222.

    Article  PubMed  CAS  Google Scholar 

  • Kirckpatrick, S. (1972). Percolation and conduction. Reviews of Modern Physics, 45(4), 574–588.

    Article  Google Scholar 

  • Le Be, J. V., & Markram, H. (2006). Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13214–13219.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, T., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309.

    Article  PubMed  Google Scholar 

  • Migliore, M., Hines, M. L., & Shepherd, G. M. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of Computational Neuroscience, 18(2), 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100.

    Article  Google Scholar 

  • Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1998). Discrete-time signal processing (2nd edn.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Press, W., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Prinz, A. A., & Fromherz, P. (2003) Effect of neuritic cables on conductance estimates for remote electrical synapses. Journal of Neurophysiology, 89, 2215–2224.

    Article  PubMed  Google Scholar 

  • Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9(12), 1483–1508.

    Article  PubMed  CAS  Google Scholar 

  • Sacconi, L., Dombeck, D. A., & Webb, W. W. (2006). Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3124–3129.

    Article  PubMed  CAS  Google Scholar 

  • Salameh, A., & Dhein, S. (2005). Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochimica et Biophysica Acta, 1719(1–2), 36–58.

    Article  PubMed  CAS  Google Scholar 

  • Saraga, F., Ng, L., & Skinner, F. K. (2006). Distal gap junctions and active dendrites can tune network dynamics. Journal of Neurophysiology, 95(3), 1669–1682.

    Article  PubMed  Google Scholar 

  • Silberberg, G., & Markram, H. (2007). Di-synaptic inhibition between pyramidal neurons via martinotti cells in neocortical layer V. Neuron, 53(5), 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G. J., & Palmer, L. M. (2006). Imaging membrane potential in dendrites and axons of single neurons. Pflügers Archiv, 453(3), 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Szabadics, J., Lorincz, A., & Tamás, G. (2001). Beta and gamma frequency synchronization by dendritic GABAergic synapses and gap junctions in a network of cortical interneurons. The Journal of Neuroscience, 21, 5824–5831.

    PubMed  CAS  Google Scholar 

  • Tamás, G., Buhl, E. H., Lorincz, A., & Somogyi, P. (2000). Proximally targeted GABAergic synapses and gap junctions in a network of cortical interneurons. Nature of Neuroscience, 3, 366–371.

    Article  Google Scholar 

  • Traub, R. (1995). Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances. Journal of Computational Neuroscience, 2(4), 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Kopell, N., Bibbig, A., Buhl, E. H., LeBeau, F. E. N., & Whittington, M. A. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. Journal of Neuroscience, 21, 9476–9486.

    Google Scholar 

  • Ulrich, D. (2002). Dendritic resonance in rat neocortical pyramidal cells. Journal of Neurophysiology, 87, 2753–2759.

    PubMed  Google Scholar 

  • Venezian, G. (1994). On the resistance between two points on a grid. American Journal of Physics, 62(11), 1000–1004.

    Article  Google Scholar 

  • Wallraff, A., Köhling, R., Heinemann, U., Theis, M., Willecke, K., & Steinhäuser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. Journal of Neuroscience, 26(20), 5438–5447.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T. F. (1996). Cellular biophysics. (Vol 2) Cambridge, MA: The MIT Press.

    Google Scholar 

  • Wierzba, G. M., Joshi, V., Srivastava, A., Noren, K. V., & Svoboda, J. A. (1989). Sspice—Symbolic SPICE for linear active circuits, Proc. of the 32nd Midwest symposium on circuits and systems (pp. 1197–1201). Urbana, IL.

  • Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., et al. (2007) Multimodal fast optical interrogation of neural circuitry. Nature, 446(7136), 633–639.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. M. Hasler, D. Atkinson, I. Segev, A. Zemanian and M. Knaflitz for helpful discussions and to Drs. D. Golomb and D. Ulrich for comments on an earlier version of the manuscript. Support: European Commission “NEURONANO” FP6 grant (NMP4-CT-2006-031847); Sokrates/Erasmus Programme (to C.C.). C.C.’s present address: Dept. of Cell Biology and Morphology, Univ. Lausanne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Giugliano.

Additional information

Action Editor: Xiao-Jing Wang

Corrado Calì and Thomas K. Berger are equally contributing authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calì, C., Berger, T.K., Pignatelli, M. et al. Inferring connection proximity in networks of electrically coupled cells by subthreshold frequency response analysis. J Comput Neurosci 24, 330–345 (2008). https://doi.org/10.1007/s10827-007-0058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0058-2

Keywords

Navigation