Skip to main content
Log in

Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites

  • 2. Energy: Fuel cells, batteries etc.
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The preparation and oxygen permeation properties of the (Ce0.8Pr0.2)O2−δ − x vol% MnFe2O4 composites, where x = 0 to 35, have been investigated. The samples were prepared by the Pechini method. In the case of Ce0.8Pr0.2O2−δ, an oxygen flux density of 6 μmol⋅cm−2⋅s−1 (L = 0.0247 cm) and the maximum methane conversion of 50% were attained at 1000C. Unlike composites consisting of Gd-doped CeO2 and MnFe2O4, the oxygen permeability of the (Ce0.8Pr0.2)O2−δ – x vol% MnFe2O4 composites was almost constant regardless of the volume fraction of MnFe2O4; however, the optimum volume fraction of MnFe2O4 was determined to be 5 to 25 in the context of the chemical and mechanical stabilities under methane conversion atmosphere. In addition, the surface modification of the (Ce0.8Gd0.2)O2−δ – 15 vol% MnFe2O4 composite was performed by using the FePt nanoparticles. The catalyst loading of 2.8 mg/cm2 on the both side of the 0.3 mm-thick (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite increased the oxygen flux density from 0.30 to 0.76 μmol⋅cm−2⋅s−1 in the case of He/air gradients; however, the effect seems to be reduced in the case of high oxygen flux density caused by a large pO2 gradient. Moreover, the Langmuir-Blodgett film of the FePt nanoparticles were successfully prepared on the tape-cast (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite. Hydrophobic treatments for the surface of the composite were crucial to achieve high transfer ratio for the deposition of the LB film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Teraoka, H.M. Zhang, S. Furukawa, and N. Yamazoe, Chemistry Letters, 1743 (1985).

  2. P.N. Dyer, R.E. Richards, S.L. Russek, and D.M. Taylor, Solid State Ionics, 134, 21 (2000).

    Article  CAS  Google Scholar 

  3. Z.P. Shao, G.X. Xiong, H. Dong, W.H. Yang, and L.W. Lin, Separation and Purification Technology, 25, 97 (2001).

    Article  CAS  Google Scholar 

  4. T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, and Y. Takita, Solid State Ionics, 152, 709 (2002).

    Article  Google Scholar 

  5. H. Takamura, K. Enomoto, Y. Aizumi, A. Kamegawa, and M. Okada, Solid State Ionics, 175, 379 (2004).

    Article  CAS  Google Scholar 

  6. V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, and F.M.B. Marques, Journal of the European Ceramic Society, 21, 1763 (2001).

    Article  CAS  Google Scholar 

  7. U. Nigge, H.D. Wiemhofer, E.W.J. Romer, H.J.M. Bouwmeester, and T.R. Schulte, Solid State Ionics, 146, 163 (2002).

    Article  CAS  Google Scholar 

  8. H. Takamura, M. Kawai, K. Okumura, A. Kamegawa, and M. Okada, in Preparation and Oxygen Permeability of Gd-Doped Ceria and Spinel-Type Ferrite Composites (Materials Research Society, Boston, USA, 2002), pp. EE8.11.1.

    Google Scholar 

  9. H. Takamura, K. Okumura, Y. Koshino, A. Kamegawa, and M. Okada, Journal of Electroceramics, 13, 613 (2004).

    Article  CAS  Google Scholar 

  10. T.S. Stefanik and H.L. Tuller, Journal of Electroceramics, 13, 799 (2004).

    Article  CAS  Google Scholar 

  11. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).

    Article  CAS  Google Scholar 

  12. D.P. Fagg, V.V. Kharton, A. Shaula, I.P. Marozau, and J.R. Frade, Solid State Ionics, 176, 1723 (2005).

    Article  CAS  Google Scholar 

  13. H. Takamura and H.L. Tuller, Solid State Ionics, 134, 67 (2000).

    Article  CAS  Google Scholar 

  14. H. Takamura, K. Enomoto, A. Kamegawa, and M. Okada, Solid State Ionics, 154, 581 (2002).

    Article  Google Scholar 

  15. C. Kleinlogel and L.J. Gauckler, Solid State Ionics, 135, 567 (2000).

    Article  CAS  Google Scholar 

  16. S.H. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science, 287, 1989 (2000).

    Article  CAS  Google Scholar 

  17. H. Takamura, T. Kobayashi, T. Kasahara, A. Kamegawa, and M. Okada, Journal of Alloys and Compounds, 408–412, 1084 (2006).

    Article  Google Scholar 

  18. H.I. Yoo and H.L. Tuller, Journal of Materials Research, 3, 552 (1988).

    CAS  Google Scholar 

  19. G. Bonsdorf, K. Schafer, K. Teske, H. Langbein, and H. Ullmann, Solid State Ionics, 110, 73 (1998).

    Article  CAS  Google Scholar 

  20. Y. Takasu, T. Sugino, and Y. Matsuda, Journal of Applied Electrochemistry, 14, 79 (1984).

    Article  CAS  Google Scholar 

  21. M. Nauer, C. Ftikos, and B.C. H. Steele, Journal of the European Ceramic Society, 14, 493 (1994).

    Article  CAS  Google Scholar 

  22. A.E. Sovestnov, V.A. Shaburov, B.T. Melekh, I.A. Smirnov, Y.P. Smirnov, A.V. Tyunis, and A. I. Egorov, Fizika Tverdogo Tela, 36, 1140 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Takamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamura, H., Sugai, H., Watanabe, M. et al. Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites. J Electroceram 17, 741–748 (2006). https://doi.org/10.1007/s10832-006-7776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-7776-0

Keywords

Navigation