Skip to main content

Advertisement

Log in

Heat shock protein 70 gene polymorphisms’ influence on the electrophysiology of long QT syndrome

  • MULTIMEDIA REPORT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Long QT syndrome (LQTS) is a rare cardiac disorder caused due to mutations in genes encoding ion channels responsible for generation of electrical impulses. The heat shock protein (HSP)-70 gene, expressed under conditions of stress, plays a cardioprotective role when overexpressed and helps in the proper folding of the nascent proteins synthesized by the cellular machinery. We aimed to identify the role played by HSP-70 gene polymorphisms in the pathogenesis of LQTS.

Methods

Study included 49 LQTS patients, 71 family members, and 219 healthy individuals recruited from an ethnically matched population. Genotyping of the single-nucleotide polymorphisms (SNPs) rs1043618 (HSP-70-1, +190G/C), rs1061581 (HSP-70-2, +1267A/G), and rs2227956 (HSP-70-hom, +2437T/C) was performed by PCR-RFLP analysis, and the results were analyzed statistically at 95 % confidence interval and p ≤ 0. 05.

Results

The “C” allele of HSP-70-1 (+190G/C) and “G” allele of HSP-70-2 (+1267A/G) showed strong association with LQTS phenotype. The haplotype group C-G-T consisting of two risk alleles was significantly associated with the disease condition. Multifactor dimensionality reduction analysis further substantiated that the three-allele model influences the outcome of the phenotype highlighting the effect of modifiers in the etiology of LQTS.

Conclusions

As HSP-70 influences the channel assembly and maturation/trafficking of the ion channel proteins, the alleles C of the HSP-70-1 and G of the HSP-70-2 loci and the haplotype group C-G-T could be considered a diagnostic biomarker in the identification of the LQTS phenotype with a potential to affect the progression and modification of the disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hunter, J. D., Sharma, P., & Rathi, S. (2008). Long QT syndrome. Continuing education in anaesthesia. Critical Care & Pain Journal, 8, 67–70.

    Google Scholar 

  2. Booker, P. D., Whyte, S. D., & Ladusans, E. J. (2003). Long QT syndrome and anaesthesia. British Journal of Anaesthesia, 90(3), 349–66.

    Article  CAS  PubMed  Google Scholar 

  3. De Maio, A. (1999). Heat shock proteins: facts, thoughts and dreams. Shock, 11(1), 1–12.

    Article  PubMed  Google Scholar 

  4. Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16, 574–581.

    Article  CAS  Google Scholar 

  5. Arispe, N., & De Maio, A. (2000). ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. The Journal of Biological Chemistry, 275(40), 30839–30843.

    Article  CAS  PubMed  Google Scholar 

  6. Vega, V. L., Rodrı’guez-Silva, M., Frey, T., Gehrmann, M., Diaz, J. C., Steinem, C., et al. (2008). Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. Journal of Immunology, 180, 4299–4307.

    Article  CAS  Google Scholar 

  7. Rangaraju, A., Satyanarayana, M. L., Ananthapur, V., Swapna, N., Narasimhan, C., & Nallari, P. (2013). Heat shock protein 70 polymorphism in hypertrophic cardiomyopathy of South Indian cohort. Journal of Indian College of Cardiology, 3, 9–15.

    Article  Google Scholar 

  8. Pociot, F., Ronningen, K. S., & Nerup, J. (1993). Polymorphic analysis of the human MHC-linked heat shock protein 70 (HSP 70-2) and HSP 70-HOM genes in insulin dependent diabetes mellitus (IDDM). Scandanavian Journal of Immunology, 38, 491–495.

    Article  CAS  Google Scholar 

  9. Wu, Y. R., Wang, C. K., Chen, C. M., Hsu, Y., Lin, S. J., Lin, Y. Y., et al. (2004). Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson’s disease. Human Genetics, 114, 236–241.

    Article  CAS  PubMed  Google Scholar 

  10. Milner, C. M., & Campbell, R. D. (1992). Polymorphic analysis of the three MHC-linked HSP70 genes. Immunogenetics, 36, 357–362.

    Article  CAS  PubMed  Google Scholar 

  11. Menashe, I., Rosenberg, P. S., & Chen, B. E. (2008). PGA: power calculator for case-control genetic association analyses. BMC Genetics, 9, 36.

  12. Lahiri, D. K., & Nurnberger, J. I., Jr. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research, 19, 5444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hahn, L. W., Ritchie, M. D., & Moore, J. H. (2003). Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics, 19, 376–382.

    Article  CAS  PubMed  Google Scholar 

  14. Moore, J. H., Gilbert, J. C., Tsai, C. T., Chiang, F. T., Holdena, T., Barney, N., et al. (2006). A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology, 241, 252–261.

    Article  PubMed  Google Scholar 

  15. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., et al. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69, 138–147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ritchie, M. D., & Motsinger, A. A. (2005). Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies. Pharmacogenomics, 6(8), 823–834.

    Article  CAS  PubMed  Google Scholar 

  17. Cingeetham, A., Vuree, S., Dunna, N. R., Gorre, M., Nanchari, S. R., Edathara, P. M., et al. (2014). Association of caspase9 promoter polymorphisms with the susceptibility of AML in south Indian subjects. Tumor Biology, 35(9), 8813–22.

    Article  CAS  PubMed  Google Scholar 

  18. Moss, A. J., Zareba, W., Kaufman, E. S., Gartman, E., Peterson, D. R., Benhorin, J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation, 105, 7–12.

    Google Scholar 

  19. Keating, M. T., & Sanguinetti, M. C. (1996). Pathophysiology of ion channel mutations. Current Opinion in Genetics & Development, 6, 326–333.

    Article  CAS  Google Scholar 

  20. Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-qt syndrome clinical impact. Circulation, 99, 529–533.

  21. Varro, A., & Papp, J. G. (2006). Low penetrance, subclinical congenital LQTS: Concealed LQTS or silent LQTS? Cardiovascular Research, 70, 404–406.

  22. Mehta, A., Sequiera, G. L., Ramachandra, C. J. A., Sudibyo, Y., Chung, Y., Sheng, J., et al. (2014). Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human’s iPS-derived cardiomyocytes. Cardiovascular Research, 102, 497–506.

    Article  CAS  PubMed  Google Scholar 

  23. Flynn, G. C., Pohl, J., Flocco, M. T., & Rothman, J. E. (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature, 353, 726–730.

    Article  CAS  PubMed  Google Scholar 

  24. Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circulation Research, 83, 117–132.

    Article  CAS  PubMed  Google Scholar 

  25. Young, J. C. (2014). The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels. Disease Models & Mechanisms, 7, 319–329.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Department of Biotechnology, Government of India, New Delhi, and Maulana Azad National Fellowship, University Grants Commission, Government of India, New Delhi, is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Nallari.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Qureshi, S.F., Medikare, V. et al. Heat shock protein 70 gene polymorphisms’ influence on the electrophysiology of long QT syndrome. J Interv Card Electrophysiol 45, 119–130 (2016). https://doi.org/10.1007/s10840-015-0082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0082-5

Keywords

Navigation