Skip to main content
Log in

Effect of the glutaraldehyde derivatives of Calix[n]arene as cross-linker reagents on lipase immobilization

  • Original article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of the glutaraldehyde derivatives calix[n]arene (n = 4,6,8) (Calix[n]-GA) and using as cross-linkers for immobilization of Candida rugosa lipase (CRL) have been discussed in this paper. The amino functional calix[n]arene derivatives (Calix[n]-NH 2) were synthesized via reduction of dinitrile, hexanitrile and octanitrile derivatives of calix[n]arenes. These amino functional calix[n]arene derivatives (Calix[n]-NH 2) were converted to their aldehyde derivativatives with glutaraldehyde. The calix[n]arene derivatives were used in lipase immobilization in order to see the role of calix[n]arene binding site on the lipase activitiy and stability. The activity recovery of calix[n]arene-supported lipases (Calix[n]-CRL) based on the Calix[4]-CRL, Calix[6]-CRL and Calix[8]-CRL reaches to 53.5, 66.1 and 76.4%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., Soccol, V.T.: Realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 131–199 (1999)

    Google Scholar 

  2. Gargouri, M., Drouet, P., Legoy, M.D.: Synthesis of a novel macrolactone by lipase-catalysed intra-esterification of hydroxy-fatty acid in organic media. J. Biotechnol. 92, 259–266 (2002)

    Article  CAS  Google Scholar 

  3. Castillo, E., Pezzotti, F., Navarro, A., Lopez-Munguia, A.: Lipase catalysed synthesis of xylitol monoesters: solvent engineering approach. J. Biotechnol. 102, 251–259 (2003)

    Article  CAS  Google Scholar 

  4. Noel, M., Combes, D.: Effects of temperature and pressure on Rhizopus miehei lipase stability. J. Biotechnol. 102, 23–32 (2003)

    Article  CAS  Google Scholar 

  5. Saleem, M., Rashid, M.H., Jabbar, A., Perveen, R., Khalid, A.M., Rajoka, M.I.: Kinetic and thermodynamic properties of immobilized endoglucanase from Arachniotus citrinus. Process Biochem. 40, 849–855 (2003)

    Article  Google Scholar 

  6. Shahidi, F., Arachchi, J.K.V., Jeon, Y.J.: Food application of chitin and chitosans. Trends Food Sci. Technol. 10, 37–51 (1999)

    Article  CAS  Google Scholar 

  7. Bayramoglu, G., Kacar, Y., Denizli, A., Arıca, M.Y.: Covalent immobilization of lipase onto hydrophobic group incorporated poly(2-hydroxyethyl methacrylate) based hydrophilic membrane matrix. J. Food Eng. 52, 367–374 (2002)

    Article  Google Scholar 

  8. Ozturk, N., Akgol, S., Arioy, M.: Reversible adsorption of lipase on novel hydrophobic nanospheres. Sep. Purif. Technol. 58, 83–90 (2007)

    Article  CAS  Google Scholar 

  9. Evran, S., Telefoncu, A.: Modification of porcine pancreatic lipase with z-proline. Prep. Biochem. Biotechnol. 35, 191–201 (2005)

    Article  CAS  Google Scholar 

  10. Kilinc, A., Teke, M., Onal, S.: Immobilization of lipase on chitin and chitosan. Prep. Biochem. Biotechnol. 36, 153–163 (2006)

    Article  CAS  Google Scholar 

  11. Fernandez-Lafuente, R., Rosell, C.M., Rodriguez, V., Santana, C., Soler, G., Bastida, A., Guisan, J.M.: Preparation of activated supports containing low pk amino groups: a new tool for protein immobilization via the the carboxyl coupling method. Enzyme Microb. Technol. 15, 546–550 (1993)

    Article  CAS  Google Scholar 

  12. Tischer, W., Kasche, V.: Trends in immobilized enzyme: crystals or carriers? Trends Biotechnol. 17, 326–335 (1999)

    Article  CAS  Google Scholar 

  13. Migneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C.: Gulutaraldehyde behaviour in aqueous solution, reaction with protein, and application to enzyme crosslinking. BioTechniques 37, 790–802 (2004)

    CAS  Google Scholar 

  14. Betancor, L., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, G.D.O.C., Fernandez-Lafuente, R., Guisan, J.M.: Different mechanism of protein immobilization on glutaraldehyde activated supports. Effect of support activation and immobilization conditions. Enzyme Microb. Tech. 39, 877–882 (2006)

    Article  CAS  Google Scholar 

  15. Gokel, G. In: Crown Ethers and Cryptands. Royal Society of Chemistry, Cambridge, pp. 66–73 (1991)

  16. Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)

  17. Asfari, Z., Bohmer, V., Harrowfield, M., Vicens, J.: Calixarenes 2001. Kluwer Academic Publishers, Dordrecht, pp. 365–384 (2001)

  18. Gutsche, C.D.: Monographs in supramolecular chemistry. In: Stoddart, J. F. (ed.) Calixarenes Revisited. Royal Society of Chemistry, Cambridge, pp. 279–304 (1998)

  19. Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  20. Vicens, J., Böhmer, V.: Calixarenes: a versatile class of macrocyclic compounds topics in inclusion science. Academic Publishers, Dordrecht (1991)

    Google Scholar 

  21. Ediz, O., Tabakci, M., Memon, S., Yilmaz, M., Roundhill, D.M.: A convenient approach towards the synthesis of a “Proton Switchable” Chromium(VI) extractant based on Calix[4]arene. Supramol. Chem. 16, 199–204 (2004)

    Article  CAS  Google Scholar 

  22. Memon, S., Tabakci, M., Roundhill, D.M., Yilmaz, M.: A useful approach toward the synthesis and metal extractions with polymer appended thioalkyl calix[4]arenes. Polymer 46, 1553–1560 (2005)

    Article  CAS  Google Scholar 

  23. Yilmaz, M., Memon, S., Tabakci, M., Bartsch, R.A.: Design of polymer appended calixarenes as ion carriers. In: Bregg, R. K. (ed.) New Frontiers in Polymer Research. Nova Publishers, New York (2006)

  24. Gungor, O., Memon, S., Yilmaz, M., Roundhill, D.M.: Synthesis of alkyl nitrile and alkyl benzonitrile derivatives of calix[4]arene and their polymer supported analogues: a comparative study in two-phase extraction systems. React. Funct. Polym. 63, 1–9 (2005)

    Article  CAS  Google Scholar 

  25. Memon, S., Tabakci, M., Roundhill, D.M., Yilmaz, M.: Synthesis and evaluation of the Cr(VI) extraction ability of amino/nitrile calix[4]arenes immobilized onto a polymeric backbone. React. Funct. Polym. 66, 1342–1349 (2006)

    Article  CAS  Google Scholar 

  26. Ozcan, F., Sahin, O., Yilmaz, M.: Synthesis of a glutaraldehyde derivative of Calix[4]arene as a cross-linker reagent for lipase immobilization. J. Incl. Phen. 63, 123–129 (2008)

    Article  Google Scholar 

  27. Gutsche, C.D., Iqbal, M., Stewart, D.: Calixarenes. 18. Synthesis procedures for p-tert- butylcalix[4]arene. J. Org. Chem. 51, 742–745 (1986)

    Article  CAS  Google Scholar 

  28. Gutsche, C.D., Iqbal, M.: p-tert-Butylcalix[6]arene. Org. Synth. 68, 238–242 (1990)

    CAS  Google Scholar 

  29. Gutsche, C.D., Iqbal, M.: p-tert-Butylcalix[8]arene. Org. Synth. 68, 243–246 (1990)

    Google Scholar 

  30. Collins, E.M., McKervey, M.A., Madigan, E., Moran, M.B.: Chemically modified Calix[4]arenes. Regioselective synthesis of 1, 3-(Distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans. 1, 3137–3142 (1991)

    Article  Google Scholar 

  31. Wolf, N.J., Georgiev, E.M., Yordanov, A.T., Whittlesey, B.R., Koch, H.F., Roundhill, D.M.: Synthesis and crystal structures of lower rim amine and carbamoyl substituted calixarenes as transfer agents for oxyanions between an aqueous and a chloroform phase. Polyhedron 18, 885–896 (1999)

    Article  CAS  Google Scholar 

  32. Bradford, M.M.A.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  33. Chiou, S.H., Wu, W.T.: Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25, 197–204 (2004)

    Article  CAS  Google Scholar 

  34. Johri, S., Verma, V., Parshad, R., Koul, S., Taneja, S.C., Qazi, G.N.: Purification and characterisation of an ester hydrolase from a strain of Arthrobacter species: Its application in asymmetrisation of 2-benzyl-1, 3-propanediol acylates. Bioorg. Med. Chem. 9, 269–273 (2001)

    Article  CAS  Google Scholar 

  35. Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., Guisán, J.M.: Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 93, 185–197 (1998)

    Article  CAS  Google Scholar 

  36. Guisan, J.M., Sabuquillo, P., Fernandez-Lafuente, R., Fernandez-Lorente, G., Mateo, C., Halling, P.J., Kennedy, D., Miyata, E., Re, D.: Preparation of new lipases derivatives with high activity–stability in anhydrous media: adsorption on hydrophobic supports plus hydrophilization with polyethylenimine. J. Mol. Catal. B: Enzyme 11, 817–824 (2001)

    Article  CAS  Google Scholar 

  37. Gill, I., Pastor, E., Ballesteros, A.: Lipase-silicone biocomposites: efficient and versatile immobilized biocatalysts. J. Am. Chem. Soc. 121, 9487–9496 (1999)

    Article  CAS  Google Scholar 

  38. Palomo, J.M., Mũnoz, G., Fern′andez-Lorente, G., Mateo, C., Fernandez-Lafuente, R., Guisán, J.M.: Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B: Enzyme 19, 279–286 (2002)

    Article  Google Scholar 

  39. Bai, Y.X., Li, Y.F., Yang, Y.L., Yi, X.: Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem. 41, 770–777 (2006)

    Article  CAS  Google Scholar 

  40. Balcão, V.M., Paiva, A.L., Malcata, F.X.: Bioreactors with immobilized lipases: state of the art. Enzyme Microb. Tech. 18, 392–416 (1996)

    Article  Google Scholar 

  41. Villeneuve, P., Muderhwa, J.M., Graille, J.M., Haas, M.J.: Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B Enzym. 9, 113–148 (2000)

    Article  CAS  Google Scholar 

  42. Huang, X.J., Ge, D., Xu, Z.K.: Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur. Polym. J. 43, 3710–3718 (2007)

    Article  CAS  Google Scholar 

  43. Li, S.F., Chen, J.P., Wu, W.T.: Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J. Mol. Catal. B Enzym. 47, 117–124 (2007)

    Article  CAS  Google Scholar 

  44. Gianfreda, L., Modafferi, M.G.G. Jr.: Enzyme stabilization towards thermal, chemical and proteolytic deactivation. Enzyme Microb. Tech. 7, 78–82 (1985)

    Google Scholar 

  45. Fernandez-Lafuente, R., Rodrıguez, V., Mateo, C., Penzol, G., Hernandez-Justiz, O., Irazoqui, G., Villarino, A., Ovsejevi, K., Batista, F., Guisán, J.M.: Stabilization of multimeric enzymes via immobilization and post-immobilization techniques. J. Mol. Catal. B Enzym. 7, 181–189 (1999)

    Article  CAS  Google Scholar 

  46. Fernandez–Lafuente, R., Guisan, J.M., Alib, S., Cowan, D.: Immobilization of functionally unstable catechol-2, 3-dioxygenase greatly improves operational stability. Enzyme Microb. Tech. 26, 568–573 (2000)

    Article  Google Scholar 

  47. Fadiloglu, S., Soylemez, Z.: Olive oil hydrolysis by celite-immobilized Candida rugosa lipase. J. Agric. Food. Chem. 46, 3411–3414 (1998)

    Article  CAS  Google Scholar 

  48. Murray, M., Rooney, D., Van Neikerk, M., Monyenegro, A., Weatherley, L.R.: Immobilization of lipase onto lipophilic polymer particles and application to oil hydrolysis. Process Biochem. 32, 479 (1997)

    Article  CAS  Google Scholar 

  49. Knezevic, Z., Mojovic, L., Adnadjevic, B.: Palm oil hydrolysis by lipase from Candida cyhdracea immobilized on zeolite type Y. Enzyme Microb. Technol. 22, 275–280 (1998)

    Article  CAS  Google Scholar 

  50. Gupta, M.N.: Thermostabilization of proteins. Biotechnol. Appl. Biochem. 14, 1–11 (1991)

    Google Scholar 

  51. Klibanov, A.M.: Enzyme stabilization by immobilization. Anal. Biochem. 93, 1–25 (1979)

    Article  CAS  Google Scholar 

  52. Erdemir, S., Yilmaz, M.: Synthesis of calix[n]arene-based silica polymers for lipase immobilization. J. Mol. Catal. B: Enzym. (in press, 2008)

  53. Mozhaev, V.V., Melik-Nubarov, N.S., Sergeeva, M.V., Sikrnis, V., Martinek, K.: Strategy for stabilising enzymes. I. Increasing stability of enzymes via their multipoint interaction with a support. Biocatalysis 3, 179–187 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank The Research Foundation of Selcuk University (BAP) and The Scientific and Technical Research Council of Turkey (TUBITAK-Grant Number 106T435) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdemir, S., Sahin, O., Uyanik, A. et al. Effect of the glutaraldehyde derivatives of Calix[n]arene as cross-linker reagents on lipase immobilization. J Incl Phenom Macrocycl Chem 64, 273–282 (2009). https://doi.org/10.1007/s10847-009-9562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9562-5

Keywords

Navigation