Skip to main content
Log in

Application of magnetic nanoparticles modified with cyclodextrins as efficient adsorbents in separation systems

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Compared to the traditional micron-sized supports used in separation process, nano-sized adsorbents possess quite good performance due to high specific surface area and the absence of internal diffusion resistance, which improve adsorption capacity. Recently, magnetic technology has been applied in pollution removal. Over the past few years, magnetic adsorption technology has attracted considerable attention for use in dye and metal removal. Magnetic nanoparticles are particularly attractive because of their inherent properties such as large surface area and fast response under applied external magnetic field. The high surface area to volume ratio and superparamagnetism of magnetic nanoparticles, combined with formation of complexes between adsorbent and β-cyclodextrins (β-CD), can effectively remove pollutants from wastewater. These nanoparticles modified with cyclodextrins also can be used in chiral separations. Therefore nowadays, efforts are being made to magnetic nanoparticle modified with CDs as efficient adsorbent in separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mak, S.Y., Chen, D.H.: Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments. 61, 93–98 (2004)

    Article  CAS  Google Scholar 

  2. Hedges, A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    Article  CAS  Google Scholar 

  3. Rounaghi, G.H., Mohammadzadeh Kakhki, R.: Thermodynamic study of complex formation between dibenzo-18-crown-6 and UO2 2+ cation in different non-aqueous binary solutions. J. Incl. Phenom. Macrocycl. Chem. 63, 117–122 (2009)

  4. Rounaghi, G.H., Zavar, M.H., Mohammadzadeh Kakhki, R.: Thermodynamic behaviour of complexation process between DB18C6with K+, Ag+, NH4+ and Hg2+ cations in ethylacetate-dimethylformamide binary media. Russ. J. Coord. Chem. 34, 167–171 (2008)

  5. Rounaghi, G.H., Mohajeri, M., Soruri, F., Mohammadzadeh Kakhki, R.: Solvent influence upon complex formation between dibenzo-18-crown-6 with the Y3? metal cation in pure and binary mixed organic solvents. J. Chem. Eng. Data 56, 2836–2840 (2011)

  6. Razghandi, F., Rounaghi, G.H., Mohammadzadeh Kakhki, R.: Complexation study of dibenzo-18-crown-6 with UO22+ cation in binary mixed non-aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. (2011). doi:10.1007/s10847-011-0053-0

  7. Rounaghi, G.H., Mohajeri, M., Atashi, Z., Mohammadzadeh Kakhki, R.: Conductometric study of complexation reaction between 15-crown-5 and Cr3+, Mn2+ and Zn2+ metal cations in pure and binary mixed organic solvent. J. Incl. Phenom. Macrocycl. Chem. (2011). doi:10.1007/s10847-011-0081-9

  8. Rounaghi, G.H., Mohammadzadeh Kakhki, R.: Highly selective and sensitive coated-wire yttrium (III) cation selective electrode based on Kryptofix-22DD. J. Electrochem Soc 158, 121–125 (2011)

  9. Rounaghi, G.H., Mohammadzadeh Kakhki, R., Sadeghian, H.: A new cerium (III) ion selective electrode based on 2,9-dihydroxy- 1,10-diphenoxy-4,7-dithia decane, a novel synthetic ligand. Electrochim. Acta 101, 9756–9761 (2011)

  10. Mohammadzadeh Kakhki, R., Rounaghi, G.H.: Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15-crown-5. Mater. Sci. Eng. C 31, 1637–1642 (2011)

  11. Mohammadzadeh Kakhki, R., Rounaghi, G.H.: Competitive bulk liquid membrane transport of heavy metal cations using the 18-crown-6 ligand as an ionophore. J. Chem. Eng. Data 56, 3169–3174 (2011)

  12. Rounaghi, G.H., Mohammadzadeh Kakhki, R., Eshghi, H.: Efficient transport of lead(II) cations in natural water using a liquid membrane system with dicyclohexano-18-crown-6 as carrier. Arab. J. Chem. (2012) in press

  13. Mohammadzadeh Kakhki, R.: Application of crown ethers as stationary phase in the chromatographic methods. J. Incl. Phenom. Macrocycl. Chem. 75, 11–22 (2013)

  14. Mohammadzadeh Kakhki, R.: Recent developments in microextraction techniques based on crown ethers. J Incl. Phenom. Macrocycl. Chem. 76, 253–261 (2013)

  15. Mohammadzadeh Kakhki, R., Assadi, H.: Capillary electrophoresis analysis based on crown ethers. J. Incl. Phenom. Macrocycl. Chem. 81, 1–12 (2015). doi:10.1007/s10847-014-0419-1

  16. Heydari, S.: Thermodynamic study of complex formation of β-cyclodextrin with ibuprofen by conductometric method and determination of ibuprofen in pharmaceutical drugs. Arab. J. Chem. (2013). doi:10.1016/j.arabjc.2013.02.021

  17. Mohammadzadeh Kakhki, R., Heydari, S.: A simple conductometric method for trace level determination of brilliant green in water based on β-cyclodextrin and silver nitrate and determination of their thermodynamic parameters. Arab. J. Chem 7, 1086–1090 (2014). doi:10.1016/j.arabjc.2011.09.016

  18. Crini, G., Peindy, H.N.: Adsorption of C.I. Basic blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigments 70, 204–211 (2006)

    Article  CAS  Google Scholar 

  19. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  20. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  21. Crini, G.: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  22. Ozmen, E.Y., Sezgin, M., Yilmaz, A., Yilmaz, M.: Synthesis of beta-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour. Technol. 99, 526–531 (2008)

    Article  CAS  Google Scholar 

  23. Ozmen, E.Y., Yilmaz, M.: Use of beta-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J. Hazard. Mater. 148, 303–310 (2007)

    Article  CAS  Google Scholar 

  24. Zhao, D., Zhao, L., Zhu, C.S., Huang, W.Q., Hu, J.L.: Water insoluble cyclodextrin polymer crosslinked by citric acid synthesis and adsorption properties toward phenol and methylene blue. J. Incl. Phenom. Macrocycl. Chem. 63, 195–201 (2009)

    Article  CAS  Google Scholar 

  25. Crini, G.: Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour. Technol. 90, 193–198 (2003)

    Article  CAS  Google Scholar 

  26. Zhou, Y.T., Nie, H.L., Branford-White, C., He, Z.Y., Zhu, L.M.: Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with ketoglutaric acid. J. Colloid Interface Sci. 330, 29–37 (2009)

    Article  CAS  Google Scholar 

  27. Banerjee, S.S., Chen, D.H.: Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147, 792–799 (2007)

    Article  CAS  Google Scholar 

  28. Lim, S.F., Zheng, Y.M., Zou, S.W., Chen, J.P.: Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem. Eng. J. 152, 509–513 (2009)

    Article  CAS  Google Scholar 

  29. Chang, Y.C., Chen, D.H.: Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid mInterface Sci. 283, 446–451 (2005)

    Article  CAS  Google Scholar 

  30. Huang, S.H., Chen, D.H.: Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163, 174–179 (2009)

    Article  CAS  Google Scholar 

  31. Uzum, C., Shahwan, T., Eroglu, A., Hallam, K., Scott, T., Lieberwirth, I.: Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 43, 172–181 (2009)

    Article  CAS  Google Scholar 

  32. Liu, J.F., Zhao, Z.S., Jiang, G.B.: Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42, 6949–6954 (2008)

    Article  CAS  Google Scholar 

  33. Ozmen, M., Can, K., Arslan, G., Tor, A., Cengeloglu, Y., Ersoz, M.: Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254, 162–169 (2010)

    Article  CAS  Google Scholar 

  34. Zhou, Y.T., Branford-White, C., Nie, H.L., Zhu, L.M.: Adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with ketoglutaric acid. Colloids Surf. B 74, 244–252 (2009)

    Article  CAS  Google Scholar 

  35. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  36. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  37. Norkus, E.: Metal ion complexes with native cyclodextrins: An overview. J. Incl. Phenom. Macrocycl. Chem. 65, 237–248 (2009)

    Article  CAS  Google Scholar 

  38. Skold, M.E., Thyne, G.D., Drexler, J.W., McCray, J.E.: Solubility enhancement of seven metal contaminants using carboxymethyl-beta-cyclodextrin (CMCD). J. Contam. Hydrol. 107, 108–113 (2009)

    Article  CAS  Google Scholar 

  39. Badruddoza, A.Z.M., Hazel, G.S.S., Hidajat, K., Uddin, M.S.: Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids Surfaces A 367, 85–95 (2010)

    Article  CAS  Google Scholar 

  40. Liao, M.H., Chen, D.H.: Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem. 12, 3654–3659 (2002)

    Article  CAS  Google Scholar 

  41. Furusaki, E., Ueno, Y., Sakairi, N., Nishi, N., Tokura, S.: Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin. Carbohydr. Polym. 29, 29–34 (1996)

    Article  CAS  Google Scholar 

  42. Shamim, N., Hong, L., Hidajat, K., Uddin, M.S.: Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf. B 55, 51–58 (2007)

    Article  CAS  Google Scholar 

  43. Yu, L., Xue, W., Cui, L., Xing, W., Cao, X., Li, H.: Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal. Int. J. Biol. Macromol. 64, 233–239 (2014)

    Article  CAS  Google Scholar 

  44. Badruddoza, A.Z.M., Tay, A.S.H., Tan, P.Y., Hidajat, M.S., Uddin, K.: Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J. Hazard. Mater. 185, 1177–1186 (2011)

    Article  CAS  Google Scholar 

  45. Ghosh, S., Fang, T.H., Uddin, M.S., Hidajat, K.: Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles. Colloids Surf. B 105, 267–277 (2013)

    Article  CAS  Google Scholar 

  46. Ghosh, S., Badruddoza, A.Z.M., Uddin, M.S., Hidajat, K.: Adsorption of chiral aromatic amino acids onto carboxymethyl- β -cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J. Colloid. Interface Science 354, 483–492 (2011)

    Article  CAS  Google Scholar 

  47. Tang, S., Kong, L., Ou, J., Liu, Y., Li, X., Zou, H.: Application of cross-linked beta-cyclodextrin polymer for adsorption of aromatic amino acids. J. Mol. Recognit. 19, 39–48 (2006)

    Article  CAS  Google Scholar 

  48. Armstrong, D.W., Ward, T.J., Armstrong, R.D., Beesley, T.E.: Separation of drug stereoisomers by the formation of beta-cyclodextrin inclusion complexes. Science 232, 1132–1135 (1986)

    Article  CAS  Google Scholar 

  49. Sikder, M.T., Tanaka, S., Saito, T., Kurasaki, M.: Application of zerovalent iron impregnated chitosan-caboxymethyl-bcyclodextrin composite beads as arsenic sorbent. J. Environ. Chem. Eng. 2, 370–376 (2014)

    Article  Google Scholar 

  50. Kanel, S.R., Manning, B., Charlet, L., Choi, H.: Removal of arsenic(III) from ground water by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298 (2005)

    Article  CAS  Google Scholar 

  51. He, F., Zhao, D.: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39, 3314–3320 (2005)

    Article  CAS  Google Scholar 

  52. Sikder, M.T., Mihara, Y., Islam, M.S., Saito, T., Tanaka, S., Kurasakia, M.: Preparation and characterization of chitosan-caboxymethyl- β-cyclodextrin entrapped nano zero-valent iron composite for Cu(II) and Cr(VI) removal from wastewater. Chem. Eng. J. 236, 378–387 (2014)

    Article  CAS  Google Scholar 

  53. Fan, L., Zhang, Y., Luo, Ch., Lu, Fu, Qiu, H., Sun, M.: Synthesis and characterization of magnetic -cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue, International. J. Biol. Macromol. 50, 444–450 (2012)

    Article  CAS  Google Scholar 

  54. Pumera, M.: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010)

    Article  CAS  Google Scholar 

  55. Cai, D.Y., Song, M.: Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20, 7906–7915 (2010)

    Article  CAS  Google Scholar 

  56. Fan, L., Luo, Ch., Sun, M., Qiu, H., Li, X.: Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf. B 103, 601–607 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge use of the facilities funded by Grant 93/2 at University of Gonabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Mohammadzadeh Kakhki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakhki, R.M. Application of magnetic nanoparticles modified with cyclodextrins as efficient adsorbents in separation systems. J Incl Phenom Macrocycl Chem 82, 301–310 (2015). https://doi.org/10.1007/s10847-015-0512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0512-0

Keywords

Navigation