Skip to main content
Log in

Thermodynamic radii of lanthanide ions derived from metal–ligand complexes stability constants

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Here, we describe two sets of thermodynamic ionic radii (r1 and r2) of lanthanide ions derived from the analysis of large set of the stability constants logβ1 and logβ2 of the ML and ML2 complexes of lanthanide ions M (from Ce3+ to Lu3+) with organic ligands (L) in water. It has been demonstrated that the stability constants of two metals Mi and Mj with a given ligand L are related by simple equations logβ1j = r1i/r1j.logβ1i and logβ2j = r2i/r2j.logβ2i which formally correspond to purely electrostatic interactions between spherical cations with organic molecule. Predictive performance of these equations was assessed in fivefold cross-validation procedure. The standard deviation (s) of predictions varies from 0.3 to 1.0 for logβ1 and from 0.4 to 1.2 for logβ2 as a function of the difference of Shannon ionic radii (Δrij) of Mi and Mj: s1 = 0.27 + 4.25Δrij for logβ1 and s2 = 0.39 + 5.16Δrij for logβ2. The new radii r1 and r2 steadily decrease across the Ln series, i.e., they follow the same trend as Shannon effective radii of lanthanide ions. The calculations were performed using experimental data on 2854 logβ1 values for 445 organic ligands and 947 logβ2 values for 156 organic ligands in the complexes with 13 metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Speghini, A., Pedroni, M., Zaccheroni, N., Rampazzo, E.: In: Altavilla, C. (ed.) Upconverting Nanomaterials Perspectives, Synthesis, and Applications, pp. 37–68. CRC Press, Boca Raton (2017)

  2. Bunzli, J.-C.G.: In: de Bettencourt-Dias, A. (ed.) Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials, pp. 125–196. Wiley, Chichester (2014)

  3. Chen, X., Liu, Y., Tu, D.: Lanthanide-Doped Luminescent Nanomaterials. From Fundamentals to Bioapplications. Springer, Berlin (2014)

    Google Scholar 

  4. Cotton, S.A.: In: Altavilla, C. (ed.) Upconverting Nanomaterials Perspectives, Synthesis, and Applications, pp. 3–18. CRC Press, Boca Raton (2017)

  5. Li, F., Yang, H., Hu, H.: In: Huang, C. (ed.) Rare Earth Coordination Chemistry. Fundamentals and Applications, pp. 529–570. Wiley, Singapore (2010)

  6. Gupta, C.K., Krishnamurthy, N.: Extractive Metallurgy of Rare Earths. CRC Press, Boca Raton (2005)

    Google Scholar 

  7. de Bettencourt-Dias, A.: In: de Bettencourt-Dias, A. (ed.) Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials, pp. 1–48. Wiley, Chichester (2014)

  8. Krishnamurthy, N., Gupta, C.K.: Extractive Metallurgy of Rare Earths. CRC Press, Boca Raton (2015)

    Google Scholar 

  9. Alyapyshev, M.Y., Babain, V.A., Ustynyuk, Y.A.: Recovery of minor actinides from high-level vastes: modern trends. Russ. Chem. Rev. 85(9), 943–961 (2016)

    CAS  Google Scholar 

  10. Ustynyuk, Y.A., Borisova, N.E., Babain, V.A., Gloriozov, I.P., Manuilov, A.Y., Kalmykov, S.N., Alyapyshev, M.Y., Tkachenko, L.I., Kenf, E.V., Ustynyuk, N.A.: N, N'-Dialkyl-N, N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity: DFT computational and experimental studies. Chem. Comm. 51, 7466–7469 (2015)

    CAS  PubMed  Google Scholar 

  11. Ustynyuk, Y.A., Alyapyshev, M.Y., Babain, V.A., Ustynyuk, N.A.: Quantum chemical modelling of extraction separation of minor actinides and lanthanides: the state of the art. Russ. Chem. Rev. 85(9), 917–942 (2016)

    Google Scholar 

  12. Lan, J.-H., Shi, W.Q., Yuan, L.-Y., Li, J., Zhao, Y.-L., Chai, Z.-F.: Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord. Chem. Rev. 256(13–14), 1406–1417 (2012)

    CAS  Google Scholar 

  13. Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Mueller, K.R., von Lilienfeld, O.A.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 1–9 (2013)

    Google Scholar 

  14. Pereira, F., Xiao, K., Latino, D.A.R.S., Wu, C., Zhang, Q., Aires-de-Sousa, J.: Machine learning methods to predict density functional theory B3LYP energies of HOMO and LUMO orbitals. J. Chem. Inf. Model. 57, 11–21 (2017)

    CAS  PubMed  Google Scholar 

  15. Solov'ev, V.P., Ustynyuk, Y.A., Zhokhova, N.I., Karpov, K.V.: Predictive models for HOMO and LUMO energies of N-donor heterocycles as ligands for lanthanides separation. Mol. Inf. (2018). https://doi.org/10.1002/minf.201800025

    Article  Google Scholar 

  16. Solov'ev, V., Tsivadze, A., Marcou, G., Varnek, A.: Classification of Metal Binders by Naive Bayes Classifier on the Base of Molecular Fragment Descriptors and Ensemble Modeling. Mol Inform. (2019). https://doi.org/10.1002/minf.201900002

    Article  PubMed  Google Scholar 

  17. Solovev, V.P., Tsivadze, A.Y., Varnek, A.A.: New Approach for Accurate QSPR Modeling of Metal Complexation: Application to Stability Constants of Complexes of Lanthanide Ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with Organic Ligands in Water. Macroheterocycles. 5(4–5), 404–410 (2012)

    CAS  Google Scholar 

  18. Solov’ev, V., Marcou, G., Tsivadze, A.Y., Varnek, A.: Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO22+ with Organic Ligands: QSPR Ensemble Modeling of Stability Constants. Ind. Eng. Chem. Res. 51(41), 13482–13489 (2012)

  19. Tetko, I.V., Solov'ev, V.P., Antonov, A.V., Yao, X.J., Fan, B.T., Hoonakker, F., Fourches, D., Lachiche, N., Varnek, A.: Benchmarking of Linear and Non-Linear Approaches for Quantitative Structure-Property Relationship Studies of Metal Complexation with Organic Ligands. J. Chem. Inf. Model. 46(2), 808–819 (2006)

    CAS  PubMed  Google Scholar 

  20. Dioury, F., Duprat, A., Dreyfus, G.R., Ferroud, C., Cossy, J.: QSPR prediction of the stability constants of Gadolinium(III) complexes for magnetic resonance imaging. J. Chem. Inf. Model. 54, 2718–2731 (2014)

    CAS  PubMed  Google Scholar 

  21. Svetlitski, R., Lomaka, A., Karelson, M.: QSPR modelling of lanthanide-organic complex stability constants. Separat. Sci. Technol. 41(1), 197–216 (2006)

    CAS  Google Scholar 

  22. Kiani-Anbouhi, R., Ganjali, M.R., Norouzi, P.: Prediction of the complexation stabilities of La3+ ion with ionophores applied in lanthanoid sensors. J. Incl. Phenom. Macrocycl. Chem. 78, 325–336 (2014)

    CAS  Google Scholar 

  23. Kiani-Anbouhi, R., Ganjali, M.R., Norouzi, P.: Application of QSPR for prediction of the complexation stabilities of Sm(III) with ionophores applied in lanthanoid sensors. J. Incl. Phenom. Macrocycl. Chem. 81, 441–450 (2015)

    CAS  Google Scholar 

  24. Qi, Y.-H., Zhang, Q.-Y., Xu, L.: Correlation analysis of the structures and stability constants of Gadolinium(III) complexes. J. Chem. Inf. Comput. Sci. 42(6), 1471–1475 (2002)

    CAS  PubMed  Google Scholar 

  25. Solovev, V., Kireeva, N., Ovchinnikova, S., Tsivadze, A.: The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling. J. Incl. Phenom. Macrocycl. Chem. 83, 89–101 (2015)

    CAS  Google Scholar 

  26. Solov’ev, V., Varnek, A., Tsivadze, A.: QSPR Ensemble Modelling of the 1:1 and 1:2 Complexation of Co2+, Ni2+, and Cu2+ with Organic Ligands: Relationships between Stability Constants. J. Comput. Aided Mol. Des. 28(5), 549–564 (2014)

    PubMed  Google Scholar 

  27. Solov'ev, V.P., Kireeva, N., Tsivadze, A.Y., Varnek, A.: QSPR ensemble modelling of alkaline-earth metal complexation. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 159–171 (2013)

    CAS  Google Scholar 

  28. Solovev, V., Sukhno, I., Buzko, V., Polushin, A., Marcou, G., Tsivadze, A., Varnek, A.: Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. J. Incl. Phenom. Macrocycl. Chem. 72(3–4), 309–321 (2012)

    CAS  Google Scholar 

  29. Dimmock, P.W., Warwick, P., Robbins, R.A.: Approaches to predicting stability constants. Analyst 120(8), 2159–2170 (1995)

    CAS  Google Scholar 

  30. Hancock, R.D.: Approaches to predicting stability constants. A critical review. Analyst 122(4), 51R–58R (1997)

    Google Scholar 

  31. Choppin, G.R.: Comparison of the solution chemistry of the actinides and lanthanides. J. Less Common. Metals. 93, 323–330 (1983)

    CAS  Google Scholar 

  32. Uhnak, N.E.: Prediction of trivalent actinide amino(poly)carboxylate complex stability constants using linear free energy relationships with the lanthanide series. Sep. Sci. Technol. 53(5), 725–733 (2018)

    CAS  Google Scholar 

  33. Pettit, G., Pettit, L.: IUPAC Stability constants database. https://www.acadsoft.co.uk/ (2012) Accessed 06 March 2019

  34. Solov'ev, V.P., Kireeva, N.V., Tsivadze, A.Y., Varnek, A.A.: Structure-property modelling of complex formation of strontium with organic ligands in water. J. Struct. Chem. 47(2), 298–311 (2006)

    CAS  Google Scholar 

  35. Varnek, A., Fourches, D., Hoonakker, F., Solovev, V.P.: Substructural fragments: An universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aid. Mol. Des. 19(9–10), 693–703 (2005)

    CAS  Google Scholar 

  36. Solov'ev, V.P., Varnek, A.A.: EdiSDF (Editor of Structure-Data Files). https://vpsolovev.ru/programs/ (2008–2020) Accessed 04 April 2020

  37. Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, C., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I.V., Marcou, G.: ISIDA-platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Comput. Aided Drug Des. 4(3), 191–198 (2008)

    CAS  Google Scholar 

  38. Solov'ev, V.P.: LanComSim (Lanthanide Complexation Similarity). https://vpsolovev.ru/programs/ (2007–2020) Accessed 04 April 2020

  39. Solov'ev, V., Varnek, A.: In: Varnek, A. (ed.) Tutorials in Chemoinformatics, pp. 135–162. Wiley, Strasbourg (2017)

  40. Muller, P.H., Neumann, P., Storm, R.: Tafeln der mathematischen Statistik. VEB Fachbuchverlag, Leipzip (1979)

    Google Scholar 

  41. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    Google Scholar 

  42. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. A32, 751–767 (1976)

    CAS  Google Scholar 

  43. Mills, D.P., Liddle, S.T.: In: Stradiotto, M., Lundgren, R. J. (eds.), Ligand Design in Metal Chemistry. Reactivity and Catalysis, pp. 330–363. Wiley, Chichester (2016)

  44. Tsebrikova, G.S., Polyakova, I.N., Solovev, V.P., Ivanova, I.S., Kalashnikova, I.P.E.K.G., IBaulin, V.E., Tsivadze, A.Y.: Complexation of the new tetrakis[methyl(diphenylphosphorylated)] cyclen derivative with transition metals: First examples of octacoordinate zinc(II) and cobalt(II) complexes with cyclen molecules. Inorgan. Chim. Acta. 478, 250–259 (2018)

    CAS  Google Scholar 

  45. Thiele, N.A., Woods, J.J., Wilson, J.J.: Implementing f-block metal ions in medicine: tuning the size selectivity of expanded macrocycles. Inorg. Chem. 58(16), 10483–10500 (2019)

    CAS  PubMed  Google Scholar 

  46. Roca-Sabio, A., Mato-Iglesias, M., Esteban-Gomez, D., Toth, E., de Blas, A., Platas-Iglesias, C., Rodriguez-Blas, T.: Macrocyclic receptor exhibiting unprecedented selectivity for light lanthanides. J. Am. Chem. Soc. 131(9), 3331–3341 (2009)

    CAS  PubMed  Google Scholar 

  47. Tei, L., Baranyai, Z., Brucher, E., Cassino, C., Demicheli, F., Masciocchi, N., Giovenzana, G.B., Botta, M.: Dramatic increase of selectivity for heavy Lanthanide(III) Cations by tuning the flexibility of polydentate chelators. Inorg. Chem. 49(2), 616–625 (2010)

    CAS  PubMed  Google Scholar 

  48. Regueiro-Figueroa, M., Esteban-Gomez, D., de Blas, A., Rodriguez-Blas, T., Platas-Iglesias, C.: Understanding stability trends along the lanthanide series. Chem. Eur. J. 20, 3974–3981 (2014)

    CAS  PubMed  Google Scholar 

  49. Solovev, V.P., Baulin, V.E., Strakhova, N.N., Kazachenko, V.P., Belsky, V.K., Varnek, A.A., Volkova, T.A., Wipff, G.: Complexation of phosphoryl-containing Mono-, Bi- and Tri-podands with alkali cations in acetonitrile. Structure of the complexes and binding selectivity. J. Chem. Soc. Perkin Trans. 2(6), 1489–1498 (1998)

    Google Scholar 

  50. Ivanova, I.S., Ilyukhin, A.B., Pyatova, E.N., Demin, S.V., Zhogin, E.A., Tsebrikova, G.S., Solov'ev, V.P., Baulin, D.V., Baulin, V.E., Tsivadze, A.Y.: Effect of the 2-[(diphenylphosphoryl)metoxyphenyl]diphenylphosphine oxide derivative structures on the extraction and ion-selective properties toward rare-earth elements. Russ. Chem. Bull. (7), in press (2020)

  51. Solovev, V.P., Strakhova, N.N., Raevsky, O.A., Rudiger, V., Schneider, H.J.: Supramolecular chemistry.60. Solvent effects on crown ether complexations. J. Organ. Chem. 61(16), 5221–5226 (1996)

    CAS  Google Scholar 

  52. Kálmán, F.K., Baranyai, Z., Tóth, I., Bányai, I., Király, R., Brücher, E., Aime, S., Sun, X., Sherry, A.D., Kovács, Z.: Synthesis, potentiometric, kinetic, and NMR studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and Lanthanide(III) Ions. Inorg. Chem. 47(9), 3851–3862 (2008)

    PubMed  Google Scholar 

  53. Försterová, M., Svobodová, I., Lubal, P., Táborsky, P., Kotek, J., Hermann, P., Lukeš, I.: Thermodynamic study of lanthanide(III) complexes with bifunctional monophosphinic acid analogues of H4dota and comparative kinetic study of yttrium(III) complexes. Dalton Trans. 5, 535–549 (2007)

    Google Scholar 

  54. Baranyai, Z., Gianolio, E., Ramalingam, K., Swenson, R., Ranganathan, R.E.B., Aime, S.: The effects of intramolecular H-bond formation on the stability constant and water exchange rate of the Gd(III)-diethylenetriamine-N’-(3-amino-1, 1-propylenephosphonic)-N, N, N’’ N’’-tetraacetate complex. Contrast Media Mol. Imaging. 2, 94–102 (2007)

    CAS  PubMed  Google Scholar 

  55. Aguilar-Pérez, F., Gómez-Tagle, P., Collado-Fregoso, E., Yatsimirsky, A.K.: Phosphate ester hydrolysis by hydroxo complexes of trivalent lanthanides stabilized by 4-imidazolecarboxylate. Inorg. Chem. 45(23), 9502–9517 (2006)

    PubMed  Google Scholar 

  56. Marques, F., Gano, L., Campello, M.P., Lacerda, S., Santos, I., Lima, L.M.P., Costa, J., Antunes, P., Delgado, R.: 13- and 14-Membered macrocyclic ligands containing methylcarboxylate or methylphosphonate pendant arms: chemical and biological evaluation of their 153Sm and 166Ho complexes as potential agents for therapy or bone pain palliation. J. Inorg. Biochem. 100, 270–280 (2006)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vitaly Solov’ev or Alexandre Varnek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, V., Varnek, A. Thermodynamic radii of lanthanide ions derived from metal–ligand complexes stability constants. J Incl Phenom Macrocycl Chem 98, 69–78 (2020). https://doi.org/10.1007/s10847-020-01010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01010-0

Keywords

Navigation