Skip to main content
Log in

Microstructure evolution of laser surface remelted Zn-2.7 wt.%Cu hyperperitectic alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Laser surface remelting experiments on Zn-2.7 wt.%Cu hyperperitectic alloy were performed by using a 5kW CW CO2 laser at beam scanning velocities ranging between 6 and 1,207 mm/s. With the increase of the growth rate, the microstructures of Zn-2.7 wt.% Cu alloy changed from planar interface to lamellar structures, cellular structures, and finally to high velocity absolute stability (HVAS) planar interface at a growth rate of 349 mm/s. The critical growth rate for the transformation from lamellar structure to cells was about 96 mm/s. Quantitative measurement was preformed to reveal the relationship between the average lamellar spacing and the corresponding growth rate, and the results are in excellent agreement with the prediction of the TMK eutectic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chalmers B (1959) In: Physical metallurgy. Wiley, New York, p 1

  2. Boettinger WJ (1974) Metall Trans A 5:2023

    Article  CAS  Google Scholar 

  3. Flemings MC (1974) In: Solidification processing. McGraw-Hill, New York, p 6

  4. Lee JH, Verhoeven JD (1994) J Cryst Growth 144:353

    Article  CAS  Google Scholar 

  5. Busse P, Meissen F (1997) Scripta Mater 36:653

    Article  CAS  Google Scholar 

  6. Vandyoussefi M, Kerr HW, Kurz W (2000) Acta Mater 48:2297

    Article  CAS  Google Scholar 

  7. Yang S, Huang WD, Liu WJ, Su YP, Zhou YH (2002) Chinese J Lasers 29A:475

    Google Scholar 

  8. Gremaud M, Carrard M, Kurz W (1991) Acta Metall Mater 39:1431

    Article  CAS  Google Scholar 

  9. Liu ZX, Huang WD, Yang S (2002) Chinese J Nonferr Metal 12:458

    CAS  Google Scholar 

  10. Massalski TB (1986) In: Binary alloy phase diagram. American Society for Metals, Metals Park, OH, p 235

  11. Pan QY, Huang WD, Lin X, Zhou YH (1997) J Crystal Growth 181:109

    Article  CAS  Google Scholar 

  12. Su YP, Lin X, Wang M, Xue L, Huang WD (2004) Scripta Materialia 51:397

    Article  CAS  Google Scholar 

  13. Su YP, Wang M, Lin X, Huang WD (2004) Mater Lett 58:2670

    Article  CAS  Google Scholar 

  14. Hoadley AFA, Rappaz M, Zimmermann M (1991) Metall Trans B 22:101

    Google Scholar 

  15. Kubin LP, Estrin Y (1985) Acta Metall 33:397

    Article  Google Scholar 

  16. Trivedi R, Kurz W (1986) Int Mater Rev 39:823

    Google Scholar 

  17. Boettinger WJ, Coriell SR (1988) In: Sahm PR, Jones H, Adams CM (eds) NATO ASI Series E-No. 114. Martinus Nijboff, Dondrecht, p 81

    Google Scholar 

  18. Aziz MJ, Boettinger WJ (1994) Acta Metall Mater 42:27

    Google Scholar 

  19. Lin X, Li YM, Liu ZX, Li T, Huang WD (2001) Sci Techn Adv Mater 2:293

    Article  CAS  Google Scholar 

  20. Lin X, Huang WD, Wang M, Li YM, Li T, Su YP, Shen SJ (2002) Sci China (Series E) 45:146

    Article  CAS  Google Scholar 

  21. Hunt JD, Lu SZ (1996) Metall Mater Trans A 27:611

    Article  Google Scholar 

  22. Perepezko JH, Boettinger WJ (1983) In: Bennett LH, Massalski TB, Giessen BC (eds) Mat. Res. Soc. Symp. Proc. 19. Elsevier North Holland, New York, p 108

    Google Scholar 

  23. Liu YC, Yang GC, Zhou YH (2002) Cryst Growth 240:603

    Article  CAS  Google Scholar 

  24. Trivedi R, Magnin P, Kurz W (1987) Acta Mater 35:971

    Article  CAS  Google Scholar 

  25. Massalski TB (1986) In: Binary alloy phase diagram. Metals Park, OH, p 75

  26. Liu HY, Jones H (1992) Acta Metall 40:229

    Article  CAS  Google Scholar 

  27. Cahn RW, Haasen P (1996) In: Physical metallurgy, 4th edn. North-Holland, Amsterdam

  28. Gale WF, Totemeier TC (2004) In: Smithells metals reference book, 6th edn. Elsevier Butterworth-Heinemann, Oxford, p 14.1

  29. Ma D, Li Y, Ng SC, Jones H (2001) Sci Tech Adv Mater 2:127

    Article  CAS  Google Scholar 

  30. Wang M, Lin X, Su YP, Shen SJ, Huang WD (2002) Acta Metallurgica Sinica 38:37

    CAS  Google Scholar 

  31. Mullins WW, Sekerka RF (1963) J Appl Phys 34:323

    Article  CAS  Google Scholar 

  32. Mullins WW, Sekerka RF (1964) J Appl Phys 35:444

    Article  Google Scholar 

  33. Boettinger WJ, Shechtman D, Schaefer RJ et al (1984) Metall Trans A 15:55

    Article  Google Scholar 

  34. Gill SC, Kurz W (1993) Mater Sci Eng A 173:335

    Article  Google Scholar 

  35. Jones H (1991) Mater Sci Eng A 133:33

    Article  Google Scholar 

  36. Kurz W, Giovanola B, Trivedi R (1986) Acta Metall 34:823

    Article  CAS  Google Scholar 

  37. Yang S, Huang WD, Liu WJ, Zhou YH (2002) Prog Nat Sci 12:684

    CAS  Google Scholar 

  38. Wu JP, Hou AX, Huang DH, Bao ZY, Gao ZN, Qu SS (2001) Sci China E 44:484

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China Grant No. 50201012, 50471065. The authors would like to thank Miss Qian Chen and Miss Xiaoqin Yu of Lan Zhou University of Technology for her enthusiastic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Lin, X., Yang, S. et al. Microstructure evolution of laser surface remelted Zn-2.7 wt.%Cu hyperperitectic alloy. J Mater Sci 42, 4763–4771 (2007). https://doi.org/10.1007/s10853-006-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0618-2

Keywords

Navigation