Skip to main content
Log in

The role of Harper–Dorn creep at high temperatures and very low stresses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep experiments were conducted on single crystals of very high purity aluminum to evaluate the validity of the Harper–Dorn region of flow which occurs at very low stresses and high homologous temperatures. The results confirm the existence of a different flow process under these conditions but with a stress exponent closer to ∼3 rather than 1. Measurements show that the dislocation density within this low stress region varies with stress in a manner consistent with the behavior anticipated from an extrapolation of data reported in the regime of conventional power-law creep at high stresses. All of the experimental results are in reasonable agreement with earlier published data, including with the original data of Harper and Dorn when their results are plotted without incorporating a threshold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, Israel, p 255

    Google Scholar 

  2. Langdon TG (2002) Metall Mater Trans 33A:249

    Article  CAS  Google Scholar 

  3. Weertman J (1957) J Appl Phys 28:1185. doi:https://doi.org/10.1063/1.1722604

    Article  Google Scholar 

  4. Weertman J (1955) J Appl Phys 26:1213. doi:https://doi.org/10.1063/1.1721875

    Article  CAS  Google Scholar 

  5. Mohamed FA, Langdon TG (1974) Acta Metall 22:779. doi:https://doi.org/10.1016/0001-6160(74)90088-1

    Article  CAS  Google Scholar 

  6. Yavari P, Langdon TG (1982) Acta Metall 30:2181. doi:https://doi.org/10.1016/0001-6160(82)90139-0

    Article  CAS  Google Scholar 

  7. Cannon WR, Langdon TG (1983) J Mater Sci 18:1. doi:https://doi.org/10.1007/BF00543808

    Article  CAS  Google Scholar 

  8. Cannon WR, Langdon TG (1988) J Mater Sci 23:1. doi:https://doi.org/10.1007/BF01174028

    Article  CAS  Google Scholar 

  9. Nabarro FRN (1948) Report of a conference on strength of solids. The Physical Society, London, UK, p 75

    Google Scholar 

  10. Herring C (1950) J Appl Phys 21:437. doi:https://doi.org/10.1063/1.1699681

    Article  Google Scholar 

  11. Coble RL (1963) J Appl Phys 34:1679. doi:https://doi.org/10.1063/1.1702656

    Article  Google Scholar 

  12. Harper J, Dorn JE (1957) Acta Metall 5:654. doi:https://doi.org/10.1016/0001-6160(57)90112-8

    Article  CAS  Google Scholar 

  13. Barrett CR, Muehleisen EC, Nix WD (1972) Mater Sci Eng 10:33. doi:https://doi.org/10.1016/0025-5416(72)90063-8

    Article  CAS  Google Scholar 

  14. Mohamed FA, Murty KL, Morris JW (1973) Metall Trans 4:935. doi:https://doi.org/10.1007/BF02645593

    Article  CAS  Google Scholar 

  15. Mohamed FA, Langdon TG (1974) Metall Trans 5:2339. doi:https://doi.org/10.1007/BF02644014

    Article  CAS  Google Scholar 

  16. Kumar P, Kassner ME, Langdon TG (2007) J Mater Sci 42:409. doi:https://doi.org/10.1007/s10853-006-0782-4

    Article  CAS  Google Scholar 

  17. Murty KL, Mohamed FA, Dorn JE (1972) Acta Metall 20:1009. doi:https://doi.org/10.1016/0001-6160(72)90135-6

    Article  CAS  Google Scholar 

  18. Murty KL (1974) Mater Sci Eng 14:169. doi:https://doi.org/10.1016/0025-5416(74)90010-X

    Article  CAS  Google Scholar 

  19. Mohamed FA (1978) Metall Trans 9A:1343

    Google Scholar 

  20. Yavari P, Mohamed FA, Langdon TG (1981) Acta Metall 29:1495. doi:https://doi.org/10.1016/0001-6160(81)90184-X

    Article  CAS  Google Scholar 

  21. Yavari P, Miller DA, Langdon TG (1982) Acta Metall 30:871. doi:https://doi.org/10.1016/0001-6160(82)90085-2

    Article  CAS  Google Scholar 

  22. Mohamed FA, Ginter TJ (1982) Acta Metall 30:1869. doi:https://doi.org/10.1016/0001-6160(82)90027-X

    Article  Google Scholar 

  23. Lee S, Ardell AJ (1985) In: McQueen HJ, Bailon J-P, Dickson JI, Jonas JJ, Akben MG (eds) Strength of metals and alloys (ICSMA 7), vol 1. Pergamon Press, Oxford, UK, p 671

    Chapter  Google Scholar 

  24. Ginter TJ, Chaudhury PK, Mohamed FA (2001) Acta Mater 49:263. doi:https://doi.org/10.1016/S1359-6454(00)00316-5

    Article  CAS  Google Scholar 

  25. Ginter TJ, Mohamed FA (2002) Mater Sci Eng A322:148. doi:https://doi.org/10.1016/S0921-5093(01)01127-3

    Article  CAS  Google Scholar 

  26. Srivastava V, McNee KR, Jones H, Greenwood GW (2005) Mater Sci Tech 21:701

    Article  CAS  Google Scholar 

  27. Mohamed FA (2007) Mater Sci Eng A463:177. doi:https://doi.org/10.1016/j.msea.2006.06.142

    Article  CAS  Google Scholar 

  28. Muehleisen EC, Barrett CR, Nix WD (1970) Scripta Metall 4:995. doi:https://doi.org/10.1016/0036-9748(70)90047-5

    Article  CAS  Google Scholar 

  29. Burton B (1972) Phil Mag 25:645. doi:https://doi.org/10.1080/14786437208228897

    Article  Google Scholar 

  30. Blum W, Maier W (1999) Phys Stat Sol (a) 171:467. doi:10.1002/(SICI)1521-396X(199902)171:2<467::AID-PSSA467>3.0.CO;2-8

    Article  CAS  Google Scholar 

  31. McNee KR, Jones H, Greenwood GW (2001) In: Parker JD (ed) Creep and fracture of engineering materials and structures. The Institute of Materials, London, UK, p 185

    Google Scholar 

  32. Evans AG, Langdon TG (1976) Prog Mater Sci 21:171. doi:https://doi.org/10.1016/0079-6425(76)90006-2

    Article  CAS  Google Scholar 

  33. Bailey JE, Hirsch PB (1960) Phil Mag 5:485. doi:https://doi.org/10.1080/14786436008238300

    Article  CAS  Google Scholar 

  34. Horiuchi R, Otsuka M (1972) Trans Japan Inst Metals 13:284

    Article  Google Scholar 

  35. Kumar P, Kassner ME, Blum W, Eisenlohr P, Langdon TG (2008) Mater Sci Eng (in press)

  36. Kassner ME, McMahon ME (1987) Metall Trans 18A:835

    Article  CAS  Google Scholar 

  37. Lin P, Lee SS, Ardell AJ (1986) Acta Metall 37:739. doi:https://doi.org/10.1016/0001-6160(89)90257-5

    Article  Google Scholar 

  38. Blum W (1993) In: Cahn RW, Hassen P, Kramer EJ (eds) Plastic deformation and fracture. VCH Publishers, Weinheim, Germany, p 339

    Google Scholar 

  39. Straub S, Blum W (1990) Scripta Metall Mater 24:1837. doi:https://doi.org/10.1016/0956-716X(90)90036-G

    Article  CAS  Google Scholar 

  40. Blum W, Eisenlohr P, Breutinger F (2002) Metall Mater Trans 33A:291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Philip Eisenlohr and Prof. Wolfgang Blum (University of Erlangen-Nürnberg) for several helpful discussions. This work was supported by the Lawrence Livermore Laboratory under Grant B552748.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Kassner, M.E. & Langdon, T.G. The role of Harper–Dorn creep at high temperatures and very low stresses. J Mater Sci 43, 4801–4810 (2008). https://doi.org/10.1007/s10853-008-2680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2680-4

Keywords

Navigation