Skip to main content
Log in

Infrared spectroscopic study of water in mesoporous silica under supercritical conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure of water under high temperature–pressure conditions in mesospace was investigated by measuring the infrared spectra of water in mesoporous silica. Absorption peaks attributed to OH-stretching vibration of water in mesoporous silica were detected at lower wavenumbers as compared with bulk water, and the absorption peak positions were dependent on pore diameter. For small pore diameters (3–20 nm), absorption peak positions of water were detected at lower wavenumbers (ca. 3,300 cm−1) at 400 °C, while for larger pore diameters (30–50 nm) the peaks were detected at higher wavenumbers (ca. 3,500 cm−1). We attribute these features to the effects of mesoporous silica surface structure on the structural and vibrational modes of water. Furthermore, absorption peak positions changed significantly at different pore sizes (20 and 30 nm), indicating that the structure of water in small pores approaches a more ice-like structure. Based on our experimental results, the structured water layer in mesoporous silica is estimated to be at least 10 nm thick, which is thicker than that previously documented in molecular dynamic simulation studies where the thickness of structured water was found to be two or three layers from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:1535

    Article  CAS  Google Scholar 

  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  3. Jervis H, Kazarian SG, Chan KLA, Bruce D, King N (2004) Vib Spectrosc 35:225

    Article  CAS  Google Scholar 

  4. Brownson JRS, Tejedor-Tejedor MI, Anderson MA (2006) J Phys Chem B 110:12494

    Article  CAS  Google Scholar 

  5. Aines RD, Rossmann GR (1984) J Geophys Res 89:4059

    Article  CAS  Google Scholar 

  6. Yalamanchili MR, Atia AA, Miller JD (1996) Langmuir 12:4176

    Article  CAS  Google Scholar 

  7. Tassaing T, Danten Y, Besnard MJ (2002) J Mol Liq 101:149

    Article  CAS  Google Scholar 

  8. Meer S, Spiers CJ, Nakashima S (2005) Earth Planet Sci Lett 232:403

    Article  Google Scholar 

  9. Asay DB, Kim SH (2005) J Phys Chem B 109:16760

    Article  CAS  Google Scholar 

  10. Bailey JR, McGuire MM (2007) Langmuir 23:10995

    Article  CAS  Google Scholar 

  11. Gun’ko VM, Nychiporuk YM, Zarko VI, Goncharuk EV, Mishchuk OA, Leboda R, Skubiszewska-Zieba J, Skwarek E, Janusz W, Yurchenko GR, Osovskii VD, Ptushinskii YG, Turov VV, Gorbik PP, Blitz JP, Gude K (2007) Appl Surf Sci 253:3215

    Article  Google Scholar 

  12. Iiyama T, Nishikawa K, Otowa T, Kaneko K (1999) J Phys Chem 99:10075

    Article  Google Scholar 

  13. Maniwa Y, Kataura H, Abe M, Suzuki S, Achiba Y, Kira H, Matsuda K (2002) J Phys Soc Jpn 71:2863

    Article  CAS  Google Scholar 

  14. Ohba T, Kaneko K (2007) J Phys Chem C 111:6207

    Article  CAS  Google Scholar 

  15. Levy E, Chan LK, Yu D, Koza MM, Mastai Y, Ford RC, Li J (2010) J Solid State Chem 183:1691

    Article  CAS  Google Scholar 

  16. Richard T, Mercury L, Poulet F, d’Hendecourt L (2006) J Colloid Interface Sci 304:125

    Article  CAS  Google Scholar 

  17. Ohba T, Kanoh H, Kaneko K (2004) J Am Chem Soc 126:1560

    Article  CAS  Google Scholar 

  18. Koga K, Zeng XC, Tanaka H (1998) Chem Phys Lett 285:278

    Article  CAS  Google Scholar 

  19. Du MH, Kolchin A, Cheng HP (2003) J Chem Phys 119:6418

    Article  CAS  Google Scholar 

  20. Yang J, Wang EG (2006) Phys Rev B 73:035406

    Article  Google Scholar 

  21. Kittaka S, Ishimaru S, Kuranishi M, Matsuda T, Yamaguchi T (2006) Phys Chem Chem Phys 8:3223

    Article  CAS  Google Scholar 

  22. Kittaka S, Morimura M, Ishimaru S, Morino A, Ueda K (2008) Langmuir 25:1718

    Article  Google Scholar 

  23. Abe J, Hirano N, Tsuchiya N (2006) Jpn Mag Mineral Petrol Sci 35:187 (in Japanese with English abstract)

    CAS  Google Scholar 

  24. Abe J, Hirano N, Tsuchiya N (2007) Proceedings of 12th symposium of water–rock interaction, vol 12, p 49

  25. Kubicki JD, Blake GA, Apitz SE (1996) Am Miner 81:789

    CAS  Google Scholar 

  26. Masuda K, Haramaki T, Nakashima S, Habert B, Martines I, Kasiwabara S (2003) Appl Spectrosc 57:274

    Article  Google Scholar 

  27. Mizukami M, Moteki M, Kurihara K (2002) J Am Chem Soc 124:12889

    Article  CAS  Google Scholar 

  28. Mizukami M, Nakagawa Y, Kurihara K (2005) Langmuir 21:9402

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Christopher Blanford and anonymous referee for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, J., Hirano, N. & Tsuchiya, N. Infrared spectroscopic study of water in mesoporous silica under supercritical conditions. J Mater Sci 47, 7971–7977 (2012). https://doi.org/10.1007/s10853-012-6685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6685-7

Keywords

Navigation