Skip to main content
Log in

Influence of heat-treatment environment on Ni-ferrite nanoparticle formation from coconut water precursor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of formation of NiFe2O4 nanoparticles were investigated where the nanoparticles were produced by the proteic-sol–gel method using coconut water followed by annealing in (i) air, (ii) air in the presence of boron nitride (BN), or (iii) nitrogen. The sample dried at 473 K for 5.5 h was composed of small disordered NiFe2O4 nanoparticles in a superparamagnetic state as determined from Mössbauer spectroscopy. In general, heat treatment at high temperature leads to a nanocomposite rich in NiFe2O4. In air, annealing at 1173 K for 8 h favored the formation of the magnetically ordered NiFe2O4 inverse spinel structure, with bulk characteristics and average crystal sizes of approximately 66 nm. In a nitrogen atmosphere and in compacted BN powder under air atmosphere, the NiFe2O4 spinel structure stabilized for temperatures up to 873 and 773 K, respectively, however, decomposition of the NiFe2O4 phase into other undesired structures was observed above 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. de Paiva JAC, Graça MPF, Monteiro J, Macedo MA, Valente MA (2009) J Alloys Compd 485:637

    Article  Google Scholar 

  2. Zhang CY, Shen XQ, Zhou JX, Jing MX, Cao K (2007) J Sol-Gel Sci Technol 42:95

    Article  CAS  Google Scholar 

  3. Brook RJ, Kingery WD (1967) J Appl Phys 38:3589

    Article  CAS  Google Scholar 

  4. Jacob J, Khadar MA (2010) J Appl Phys 107:114310

    Article  Google Scholar 

  5. Safia A et al (2010) J Phys D Appl Phys 43:265001

    Article  Google Scholar 

  6. Santos JVA (2002) Filmes finos de NiFe2O4 obtidos a partir de água de coco utilizando o processo sol–gel protéico. Departamento de Física, Universidade Federal do Sergipe, São Cristóvão, p 94

    Google Scholar 

  7. de Menezes AS, Remédios CMR, Sasaki JM, da Silva LRD, Góes JC, Jardim PM, Miranda MAR (2007) J Non-Cryst Solids 353:1091

    Article  Google Scholar 

  8. Yonezawa T, Kamoshita K, Tanaka M, Kinoshita T (2008) Jpn J Appl Phys 47:1389

    Article  CAS  Google Scholar 

  9. Medeiros AML, Silva EB, Flores WH, Sasaki JM (2006) In: 17º CBECIMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, PR, Brasil

  10. Oliveira YAR, Macêdo MA (2007) In: XXV Encontro de Físicos do Norte e Nordeste, Natal, p 194

  11. Macêdo MA, Santos JG (2000) In: XVIII Encontro de Físicos do Norte e Nordeste, João Pessoa, p 101

  12. Yong JWH, Ge L, Ng YF, Tan SN (2009) Molecules 14:5144

    Article  CAS  Google Scholar 

  13. Brand RA (1992) In: Laboratorium für Angwandte Physik, Universität Duisburg, Duisburg, Germany

  14. Warren BE (1969) X-ray diffraction. Addison-Wesley Publishing Company, Mineola

    Google Scholar 

  15. Guinebretière R (2007) X-ray diffraction by polycrystalline materials. ISTE Ltd., London

  16. Ramalho M, Gama L, Antonio S, Paiva-Santos C, Miola E, Kiminami R, Costa A (2007) J Mater Sci 42:3603. doi:10.1007/s10853-006-0383-2

    Article  CAS  Google Scholar 

  17. Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) Scripta Mater 56:797

    Article  CAS  Google Scholar 

  18. Gillot B, Jemmali F, Rousset A (1983) J Solid State Chem 50:138

    Article  CAS  Google Scholar 

  19. Nadeem K, Traussnig T, Letofsky-Papst I, Krenn H, Brossmann U, Würschum R (2010) J Alloys Compd 493:385

    Article  CAS  Google Scholar 

  20. McGarvey GB, Owen DG (1998) J Mater Sci 33:35. doi:10.1023/A:1004325108714

    Article  CAS  Google Scholar 

  21. Williamson GK, Hall WH (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  22. DamascenoTeixeira J (2007) In: Departamento de Física, Universidade Federal do Ceará, Fortaleza, p 55

  23. Kurinec S, Okeke N, Gupta S, Zhang H, Xiao T (2006) J Mater Sci 41:8181. doi:10.1007/s10853-006-0393-0

    Article  CAS  Google Scholar 

  24. Stewart SJ, Figueroa SJA, Sturla MB, Scorzelli RB, García F, Requejo FG (2007) Physica B 389:155

    Article  CAS  Google Scholar 

  25. Prasad S, Gajbhiye NS (1998) J Alloys Compd 265:87

    Article  CAS  Google Scholar 

  26. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K, Furubayashi T, Nakatani I (2001) Phys Rev B 63:184108

    Article  Google Scholar 

  27. Šepelák V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Campbell SJ, Becker KD (2007) J Phys Chem C 111:5026

    Article  Google Scholar 

  28. Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Muñoz JS, Mikhov M (1998) J Magn Magn Mater 183:163

    Article  CAS  Google Scholar 

  29. Gabal MA, Al Angari YM (2009) Mater Chem Phys 115:578

    Article  CAS  Google Scholar 

  30. Li L, Li G, Smith RL, Inomata H (2000) Chem Mater 12:3705

    Article  CAS  Google Scholar 

  31. Gabal MA (2003) J Phys Chem Solids 64:1375

    Article  CAS  Google Scholar 

  32. Manova E, Kunev B, Paneva D, Mitov I, Petrov L, Estournés C, D’Orléans C, Rehspringer J-L, Kurmoo M (2004) Chem Mater 16:5689. doi:10.1021/cm049189u

    Article  CAS  Google Scholar 

  33. Ahlawat A, Sathe VG, Reddy VR, Gupta A (2011) J Magn Magn Mater 323:2049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of UFES, CNPq, FAPES and Brazilian Synchrotron Light Laboratory/LNLS, under Proposals XPD-10022, XAFS1-10171, and DXAS-9331. Also the authors thank the LNLS staff for their prompt assistance at the XAFS1, DXAS, and XPD beam lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Muniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muniz, E.P., Proveti, J.R.C., Pereira, R.D. et al. Influence of heat-treatment environment on Ni-ferrite nanoparticle formation from coconut water precursor. J Mater Sci 48, 1543–1554 (2013). https://doi.org/10.1007/s10853-012-6910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6910-4

Keywords

Navigation