Skip to main content
Log in

Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, barium hexaferrite nanoparticles were synthesized via the citrate sol–gel combustion method in a reaction medium consisting of various forms of graphene nanosheet, such as expanded graphite, expanded graphite oxide, and reduced graphite oxide to prepare novel type graphene/hexaferrite nanocomposites as microwave-absorbing material. The microstructural features and physical properties of nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis methods. Magnetic properties of the nanocomposites were studied by a vibrating sample magnetometer, and the microwave-absorption and -reflection properties of samples were also determined in the frequency range of 8–12 GHz. It was found that the surfaces of the graphene nanosheets were successfully decorated with the barium hexaferrite nanoparticles, and the resulting layered nanocomposite structure showed the reflection loss value of −58 dB at 11.42 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334

    Article  Google Scholar 

  2. Sharma R, Agarwala RC, Agarwala V (2008) Development of radar absorbing nano crystals by microwave irradiation. Mater Lett 62:2233–2236

    Article  Google Scholar 

  3. Ozgur U, Alivov Y, Morkoc H (2009) Microwave ferrites, part 1: fundamental properties. J Mater Sci-Mater Electron 20:789–834

    Article  Google Scholar 

  4. Barb D, Diamandescu L, Rusi A, Tarabasanumihaila D, Morariu M, Teodorescu V (1986) Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic-properties. J Mater Sci 21:1118–1122

    Article  Google Scholar 

  5. Zhong W, Ding WP, Zhang N, Hong JM, Yan QJ, Du YW (1997) Key step in synthesis of ultrafine BaFe12O19 by sol–gel technique. J Magn Magn Mater 168:196–202

    Article  Google Scholar 

  6. Tang ZX, Nafis S, Sorensen CM, Hadjipanayis GC, Klabunde KJ (1989) Magnetic properties of aerosol synthesized barium ferrite particles. IEEE Trans Magn 25:4236–4238

    Article  Google Scholar 

  7. Janasi SR, Rodrigues D, Landgraf FJG, Emura M (2000) Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions. IEEE Trans Magn 36:3327–3329

    Article  Google Scholar 

  8. Sozeri H (2009) Simple recipe to synthesize single-domain BaFe12O19 with high saturation magnetization. J Magn Magn Mater 321:2717–2722

    Article  Google Scholar 

  9. Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215–216:171–183

    Article  Google Scholar 

  10. Peddis D, Cannas C, Musinu A, Ardu A, Orru F, Fiorani D, Lauretti S, Rinaldi D, Muscas G, Concas G, Piccaluga G (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013

    Article  Google Scholar 

  11. Deraz NM (2010) Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J Alloys Compd 501:317–325

    Article  Google Scholar 

  12. Chia CH, Zakaria S, Yusoff M, Goh SC, Haw CY, Ahmadi Sh, Huang NM, Lim HN (2010) Size and crystallinity-dependent magnetic properties of CoFe2O4 nanocrystals. Ceram Int 36:605–609

    Article  Google Scholar 

  13. Raghavender AT, Zadro K, Pajic D, Skoko Z, Biliskov N (2010) Effect of grain size on the Neel temperature of nanocrystalline nickel ferrite. Mater Lett 64:1144–1146

    Article  Google Scholar 

  14. Zhao DX, Li QL, Ye Y, Zhang CR (2010) Synthesis and characterization of carbon nanotubes decorated with strontium ferrite nanoparticles. Synth Met 160:866–870

    Article  Google Scholar 

  15. Gao C, Li WW, Morimoto H, Nagaoka Y, Maekawa T (2006) Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J Phys Chem B 110:7213–7220

    Article  Google Scholar 

  16. Jia BP, Gao L, Sun J (2007) Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 45:1476–1481

    Article  Google Scholar 

  17. Ghasemi A, Sepelak V, Liu XX, Morisako A (2011) First study on the formation of strontium ferrite thin films on functionalized multi-walled carbon nanotube. IEEE Trans Magn 47:2800–2803

    Article  Google Scholar 

  18. Ghasemi A (2011) Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J Magn Magn Mater 323:3133–3137

    Article  Google Scholar 

  19. Li QL, Ye Y, Zhao DX, Zhang W, Zhang Y (2011) Preparation and characterization of CNTs-SrFe12O19 composites. J Alloy Compd 509:1777–1780

    Article  Google Scholar 

  20. Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063

    Article  Google Scholar 

  21. Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617

    Article  Google Scholar 

  22. He KQ, Yu LM, Sheng LM, An K, Ando Y, Zhao XL (2010) Doping effect of single-wall carbon nanotubes on the microwave absorption properties of nanocrystalline barium ferrite. Jpn J Appl Phys 49:125101

    Article  Google Scholar 

  23. Ghasemi A, Javadpour S, Liu XX, Morisako A (2011) Magnetic and reflection loss characteristics of substituted barium ferrite/functionalized multiwalled carbon nanotube. IEEE Trans Magn 47:4310–4313

    Article  Google Scholar 

  24. Li YQ, Huang Y, Qi SH, Niu L, Zhang YL, Wu YF (2012) Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl Surf Sci 258:3659–3666

    Article  Google Scholar 

  25. Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60:35–41

    Article  Google Scholar 

  26. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  27. Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  Google Scholar 

  28. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  29. Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B (2010) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48:1686–1689

    Article  Google Scholar 

  30. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  Google Scholar 

  31. He F, Lam K, Ma D, Fan JT, Chan LH, Zhang LM (2013) Fabrication of graphene nanosheet (GNS)-Fe3O4 hybrids and GNS-Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity. Carbon 58:175–184

    Article  Google Scholar 

  32. Ren LL, Huang S, Fan W, Liu TX (2011) One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl Surf Sci 258:1132–1138

    Article  Google Scholar 

  33. Li NW, Zheng MB, Chang XF, Ji GB, Lu HL, Xue LP, Pan LJ, Cao JM (2011) Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Solid State Chem 184:953–958

    Article  Google Scholar 

  34. Fu YS, Chen HQ, Sun XQ, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B 111:280–287

    Article  Google Scholar 

  35. Yao YJ, Miao SD, Liu SZ, Ma LP, Sun HQ, Wang SB (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    Article  Google Scholar 

  36. Xu Z, Huang YA, Yang Y, Shen JY, Tang T, Huang RS (2010) Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation. J Magn Magn Mater 322:3084–3087

    Article  Google Scholar 

  37. Li LC, Xiang C, Qian HS, Hao B, Chen KY, Qiao R (2011) Expanded graphite/cobalt ferrite/polyaniline ternary composites: fabrication, properties, and potential applications. J Mater Res 26:2683–2690

    Article  Google Scholar 

  38. Wang GL, Sun QR, Zhang YQ, Fan JH, Ma LM (2010) Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263:183–188

    Article  Google Scholar 

  39. Narayanan TN, Liu Z, Lakshmy PR, Gao W, Nagaoka Y, Kumar DS, Lou J, Vajtai R, Ajayan PM (2012) Synthesis of reduced graphene oxide-Fe3O4 multifunctional freestanding membranes and their temperature dependent electronic transport properties. Carbon 50:1338–1345

    Article  Google Scholar 

  40. Wang QH, Wang DW, Li YQ, Wang TM (2012) Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance. J Nanosci Nanotechnol 12:4583–4590

    Article  Google Scholar 

  41. Xie GQ, Xi PX, Liu HY, Chen FJ, Huang L, Shi YJ, Hou FP, Zeng ZZ, Shao CW, Wang J (2012) A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22:1033–1039

    Article  Google Scholar 

  42. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  Google Scholar 

  43. Bai S, Shen XP, Zhong X, Liu Y, Zhu GX, Xu X, Chen KM (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346

    Article  Google Scholar 

  44. Yang YQ, Wang JN (2014) Synthesis and characterization of a microwave absorbing material based on magnetoplumbite ferrite and graphite nanosheet. Mater Lett 124:151–154

    Article  Google Scholar 

  45. Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T, Das CK (2014) Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. Rsc Adv 4:17039–17053

    Article  Google Scholar 

  46. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Amer Soc 80:1339

    Article  Google Scholar 

  47. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  Google Scholar 

  48. Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208

    Article  Google Scholar 

  49. Sozeri H, Durmus Z, Baykal A, Uysal E (2012) Preparation of high quality, single domain BaFe12O19 particles by the citrate sol-gel combustion route with an initial Fe/Ba molar ratio of 4. Mater Sci Eng B 177:949–955

    Article  Google Scholar 

  50. Durmus Z, Kavas H, Sozeri H, Toprak MS, Aslan A, Baykal A (2012) Poly(vinyl phosphonic acid) (PVPA)-BaFe12O19 Nanocomposite. J Supercond Nov Magn 25:1185–1193

    Article  Google Scholar 

  51. Sort J, Nogues J, Surinach S, Munoz JS, Baro MD, Chappel E, Dupont F, Chouteau G (2001) Coercivity and squareness enhancement in ball-milled hard magnetic-antiferromagnetic composites. Appl Phys Lett 79:1142–1144

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank The Research Fund of Bezmialem Vakif University (Project No. 9.2013/4) and TUBITAK, The Scientific and Technological Research Council of Turkey (Project No. 213M462) for the financial supports for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Durmus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmus, Z., Durmus, A. & Kavas, H. Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J Mater Sci 50, 1201–1213 (2015). https://doi.org/10.1007/s10853-014-8676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8676-3

Keywords

Navigation