Skip to main content
Log in

Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of microporous polymers was produced via the self-condensation of dichloroxylene which is a typical bischloromethyl monomer for a one-step synthetic process. The influences of experimental conditions including type of solvent, reaction time, and addition amount of catalyst on the polymer properties were systematically investigated. The results showed that Brunauer–Emmett–Teller (BET) specific surface areas and pore volumes of the hypercrosslinked polymers (HCPs) increased rapidly as the increase of reaction time at first and then remained nearly constant. In addition, there is a threshold concentration of catalyst for producing HCPs with high BET specific surface areas and big pore volumes. Under optimal reaction conditions, when 1, 2-dichloroethane was used as solvent, reaction time was 21 h and the molar ratio of catalyst to dichloroxylene was one; the microporous polymer with maximum BET specific surface area of up to 1446.32 m2/g was obtained. Furthermore, the adsorption performance of the as-prepared HCPs was studied using aniline as model adsorbate. The adsorption of aniline followed a pseudo-second-order model, and the adsorption isotherm was proved to fit the Langmuir adsorption model (R 2 > 0.99). The maximum adsorption capacity of aniline could reach 769.23 mg/g at 20 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471–484

    Article  Google Scholar 

  2. Abbott LJ, Colina CM (2014) Formation of microporosity in hyper-cross-linked polymers. Macromolecules 47:5409–5415

    Article  Google Scholar 

  3. Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mat Interfaces 5:1849–1855

    Article  Google Scholar 

  4. Hao W, Björkman E, Lilliestrale M, Hedin N (2013) Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energy 112:526–532

    Article  Google Scholar 

  5. Chen B, Xiang S, Qian G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  Google Scholar 

  6. Ratvijitvech T, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2014) Post-synthetic modification of conjugated microporous polymers. Polymer 55:321–325

    Article  Google Scholar 

  7. Dang D, Wu P, He C, Xie Z, Duan C (2010) Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. JACS 132:14321–14323

    Article  Google Scholar 

  8. Xu C, Hedin N (2013) Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J Mater Chem A 1:3406–3414

    Article  Google Scholar 

  9. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  Google Scholar 

  10. Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245

    Article  Google Scholar 

  11. Wen Q, Zhou TY, Zhao QL, Fu J, Ma Z, Zhao X (2015) A triptycene-based microporous organic polymer bearing tridentate ligands and its application in suzuki-miyaura cross-coupling reaction. Macromol Rapid Commun 36:413–418

    Article  Google Scholar 

  12. Chen Q, Liu DP, Luo M, Feng LJ, Zhao YC, Han BH (2014) Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake. Small 10(2):308–315

    Article  Google Scholar 

  13. Wang J, Liu Q (2014) An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption. Nanoscale 6:4148–4156

    Article  Google Scholar 

  14. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112:3959–4015

    Article  Google Scholar 

  15. McKeown NB (2012) Polymers of intrinsic microporosity. ISRN Mater Sci 2012:1–16

    Article  Google Scholar 

  16. Tsyurupa M, Davankov V (2006) Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review. React Funct Polym 66:768–779

    Article  Google Scholar 

  17. Huang J, Zhou X, Turner SR (2015) Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. Polymer 59:42–48

    Article  Google Scholar 

  18. Weng X, Baez JE, Khiterer M, Hoe MY, Bao Z, Shea KJ (2015) Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew Chem Int Ed 54:11214–11218

    Article  Google Scholar 

  19. Cheng G, Bonillo B, Sprick RS, Adams DJ, Hasell T, Cooper AI (2014) Conjugated polymers of intrinsic microporosity (C-PIMs). Adv Funct Mater 24:5219–5224

    Article  Google Scholar 

  20. Zhuang X, Gehrig D, Forler N, Liang H, Wagner M, Hansen MR, Laquai F, Zhang F, Feng X (2015) Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv Mater 27:3789–3796

    Article  Google Scholar 

  21. Zhang Q, Zhang S, Li S (2012) Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 45:2981–2988

    Article  Google Scholar 

  22. Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25:1630–1635

    Article  Google Scholar 

  23. Arab P, Rabbani MG, Sekizkardes AK, İslamoğlu T, El Kaderi HM (2014) Copper (I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 26:1385–1392

    Article  Google Scholar 

  24. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894

    Article  Google Scholar 

  25. Ma Y, Zhou Q, Li A, Shuang C, Shi Q, Zhang M (2014) Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline. J Hazard Mater 266:84–93

    Article  Google Scholar 

  26. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453

    Article  Google Scholar 

  27. Lu AH, Hao GP (2013) Porous materials for carbon dioxide capture. Annu. Rep Prog Chem Sect A: Inorg. Chem 109:484–503

    Article  Google Scholar 

  28. Germain J, Fréchet JM, Svec F (2007) Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J Mater Chem 17:4989–4997

    Article  Google Scholar 

  29. Davankov V, Tsyurupa M (1990) Structure and properties of hypercrosslinked polystyrene-the first representative of a new class of polymer networks. React Polym 13:27–42

    Article  Google Scholar 

  30. Ahn JH, Jang JE, Oh CG, Ihm SK, Cortez J, Sherrington DC (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules 39:627–632

    Article  Google Scholar 

  31. Li B, Gong R, Luo Y, Tan B (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7:10910–10916

    Article  Google Scholar 

  32. Zeng SZ, Guo L, He Q, Chen Y, Jiang P, Shi J (2010) Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture. Microporous Mesoporous Mater 131:141–147

    Article  Google Scholar 

  33. Martín CF, Stöckel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483

    Article  Google Scholar 

  34. Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44:2410–2414

    Article  Google Scholar 

  35. Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. JACS 134:10741–10744

    Article  Google Scholar 

  36. Yao S, Yang X, Yu M, Zhang Y, Jiang JX (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2:8054–8059

    Article  Google Scholar 

  37. Liu G, Wang Y, Shen C, Ju Z, Yuan D (2015) A facile synthesis of microporous organic polymers for efficient gas storage and separation. J Mater Chem A 3:3051–3058

    Article  Google Scholar 

  38. Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24:5703–5707

    Article  Google Scholar 

  39. Zhang Y, Li Y, Wang F, Zhao Y, Zhang C, Wang X, Jiang JX (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55:5746–5750

    Article  Google Scholar 

  40. Gonell S, Poyatos M, Peris E (2014) Main-chain organometallic microporous polymers bearing triphenylene-tris (N-heterocyclic carbene)-gold species: catalytic properties. Chem Eur J 20:5746–5751

    Article  Google Scholar 

  41. Saleh M, Lee HM, Kemp KC, Kim KS (2014) Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl Mat Interfaces 6:7325–7333

    Article  Google Scholar 

  42. Xu S, Song K, Li T, Tan B (2015) Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki-Miyaura coupling reactions. J. Mater. Chem. A 3:1272–1278

    Article  Google Scholar 

  43. Karthikeyan S, Viswanathan K, Boopathy R, Maharaja P, Sekaran G (2015) Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon. J Ind Eng Chem 21:942–950

    Article  Google Scholar 

  44. Liu YB, Qu D, Wen YJ, Ren HJ (2015) Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1. Appl Microbiol Biotechnol 99:5317–5326

    Article  Google Scholar 

  45. Li C, Zhang X, Hao X, Wang M, Ding C, Wang Z, Wang Y, Guan G, Abudula A (2015) Efficient recovery of high-purity aniline from aqueous solutions using pervaporation-fractional condensation system. AlChE J 61:4445–4455

    Article  Google Scholar 

  46. Jiang L, Liu L, Xiao S, Chen J (2016) Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chem Eng J 284:609–619

    Article  Google Scholar 

  47. Amatore C, Gaubert F, Jutand A, Utley JH (1996) Mechanistic and synthetic aspects of a novel route to poly-p-xylylene (PPX) via nickel complex catalysed electropolymerisation of 1, 4-bis (chloromethyl) benzene. J Chem Soc Perkin Trans 2:2447–2452

    Article  Google Scholar 

  48. Abbott LJ, Colina CM (2011) Atomistic structure generation and gas adsorption simulations of microporous polymer networks. Macromolecules 44:4511–4519

    Article  Google Scholar 

  49. Yang Sl WuZH, Yang W, Yang MB (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test 27:957–963

    Article  Google Scholar 

  50. Tang L, Zhang S, Zeng GM (2015) Rapid adsorption of 2, 4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. J Colloid Interface Sci 445:1–8

    Article  Google Scholar 

  51. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2012AA02A404), the Key Program of the National Natural Science Foundation of China (Grant No. 51433008), and the Basic Research of Northwestern Polytechnical University (Grant No. 3102014JCQ01094, JC20120248, and 3102014ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fan, X., Jia, X. et al. Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline. J Mater Sci 51, 8579–8592 (2016). https://doi.org/10.1007/s10853-016-0118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0118-y

Keywords

Navigation