Skip to main content
Log in

Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) and graphene-PDMS nanocomposites (GP) have been widely studied because of their excellent properties, of which the elastic modulus is very important for various applications. Here, the dependence of the elastic modulus of properly cured PDMS and GP on the temperature has been investigated. For both PDMS and GP, a critical temperature (Tc) has been found, which originates from the strong affinity of PDMS chains to the PDMS network and graphene sheet, as suggested by molecular dynamics simulation. Graphene inhibits the cross-linking of PDMS close to its surface, which leads to the reduced elastic modulus of GP (EGP). Only when the temperature is above Tc, EGP increases with temperature. This is the result of the entropy elasticity of PDMS and the re-initiated cross-linking of PDMS. However, the elastic moduli of PDMS and GP are independent of the temperature below Tc. Here, the study provides a guideline for the preparation and using of PDMS and its composite at various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jiang W, Niu D, Liu H et al (2014) Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv Funct Mater 24:7598–7604

    Article  CAS  Google Scholar 

  2. Hu Y, Wu G, Lan T, Zhao J, Liu Y, Chen W (2015) A graphene-based bimorph structure for design of high performance photoactuators. Adv Mater 27:7867–7873

    Article  CAS  Google Scholar 

  3. Yan C, Wang J, Lee PS (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137

    Article  CAS  Google Scholar 

  4. Zdrojek M, Bomba J, Łapińska A et al (2018) Graphene-based plastic absorber for total sub-terahertz radiation shielding. Nanoscale 10:13426–13431

    Article  CAS  Google Scholar 

  5. Boland CS, Khan U, Ryan G et al (2016) Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354:1257–1260

    Article  CAS  Google Scholar 

  6. Zhang Y, Zhu Y, Lin G, Ruoff RS, Hu N, Schaefer DW, Mark JE (2013) What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54:3605–3611

    Article  CAS  Google Scholar 

  7. Zhao YH, Zhang YF, Bai SL (2016) High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos Part A Appl Sci Manuf 85:148–155

    Article  CAS  Google Scholar 

  8. Wolf MP, Salieb-Beugelaar GB, Hunziker P (2018) PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci 83:97–134

    Article  CAS  Google Scholar 

  9. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643

    Article  CAS  Google Scholar 

  10. Terrones M, Martín O, González M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Díaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23:5302–5310

    Article  CAS  Google Scholar 

  11. Cao L, Wang Y, Dong P, Vinod S, Tijerina JT, Ajayan PM, Xu Z, Lou J (2016) Interphase induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocomposites. Small 12:3723–3731

    Article  CAS  Google Scholar 

  12. Xue L, Sanz B, Luo A et al (2017) Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11:9711–9719

    Article  CAS  Google Scholar 

  13. Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C6:2139–2214

    Google Scholar 

  14. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354

    Article  CAS  Google Scholar 

  15. Li Q, Liu C, Lin YH, Liu L, Jiang K, Fan S (2015) Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9:409–418

    Article  Google Scholar 

  16. Wang W, Xiang C, Zhu Q, Zhong W, Li M, Yan K, Wang D (2018) Multistimulus responsive actuator with go and carbon nanotube/pdms bilayer structure for flexible and smart devices. ACS Appl Mater Int 10:27215–27223

    Article  CAS  Google Scholar 

  17. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  18. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  19. Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499

    Article  CAS  Google Scholar 

  20. Casiraghi C, Hartschuh A, Qian H et al (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441

    Article  CAS  Google Scholar 

  21. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2010) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  Google Scholar 

  22. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  Google Scholar 

  23. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650

    Article  CAS  Google Scholar 

  24. Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395–2402

    Article  CAS  Google Scholar 

  25. Zhang W, Srivastava I, Zhu YF, Picu CR, Koratkar NA (2009) Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5:1403–1407

    Article  CAS  Google Scholar 

  26. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  CAS  Google Scholar 

  27. Asi O (2008) Mechanical properties of glass–fiber reinforced epoxy composites filled with Al2O3 particles. J Reinf Plast Compos 28:2861–2867

    Article  Google Scholar 

  28. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  29. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  30. Mark JE (2004) Some interesting things about polysiloxanes. Acc Chem Res 37:946–953

    Article  CAS  Google Scholar 

  31. Xue L, Pham JT, Iturri J, del Campo A (2016) Stick–slip friction of PDMS surfaces for bioinspired adhesives. Langmuir 32:2428–2435

    Article  CAS  Google Scholar 

  32. Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39:1165–1195

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Rakesh Das for the language editing of this article. The research was funded by National Key R&D Program of China (2018YFB1105100, 2016YFA0200200) and National Natural Science Foundation of China (51503156, 51973165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjian Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, Z., Meng, F. et al. Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite. J Mater Sci 55, 1553–1561 (2020). https://doi.org/10.1007/s10853-019-04126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04126-y

Navigation