Skip to main content
Log in

Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The intergranular corrosion (IGC) behavior of an extruded 6005A alloy profile with the coexisting of peripheral coarse grain (PCG) structure and partial recrystallized grain (PRG) structure was investigated by using an accelerated corrosion test, electrochemical impedance spectroscopy and a quasi in situ examination of IGC process. PCG structure was found to have a unique IGC behavior that pitting corrosion and subsequent IGC are less severe and will not be transformed into intragranular corrosion as they were found in PRG structure. Microstructure characterization reveals that the microstructural differences in grain boundary precipitates, primary α-AlFeMnSi intermetallic particles and grain characteristic between PCG structure and PRG structure are the reason for these phenomena. Further analysis indicates that the grain boundaries decorated with more AlFeMnSi particles and Q phase precipitates are more sensitive to corrosion, where Q phase precipitates are the primary cathodes and the most important factor affecting IGC; AlFeMnSi particles are supposed to initiate pitting corrosion since they are dissolved as anodes in the early stage of corrosion. With the development of corrosion, they are transformed into cathodes and become the bridges of IGC propagation by connecting the Q phase precipitates at grain boundary. In addition, grain characteristic was also found to have great effects on IGC. With the decrease in grain size and the increase in the frequency of high-angle grain boundaries and the dislocation density, corrosion becomes more severe and more likely to be transformed into intragranular corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhang C, Wang C, Zhang Q, Zhao G, Chen L (2019) Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al–Mg–Si alloy. J Mater Process Technol 270:323–334

    CAS  Google Scholar 

  2. Svenningsen G, Larsen MH, Walmsley JC, Nordlien JH, Nisancioglu K (2006) Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content. Corros Sci 48:1528–1543

    CAS  Google Scholar 

  3. Svenningsen G, Lein JE, Bjorgum A, Nordlien JH, Yu YD, Nisancioglu K (2006) Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros Sci 48:226–242

    CAS  Google Scholar 

  4. Larsen MH, Walmsley JC, Lunder O, Mathiesen RH, Nisancioglu K (2008) Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J Electrochem Soc 155:C550–C556

    CAS  Google Scholar 

  5. Zou Y, Liu Q, Jia ZH, Xing Y, Ding LP, Wang XL (2017) The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl Surf Sci 405:489–496

    CAS  Google Scholar 

  6. Liang WJ, Rometsch PA, Cao LF, Birbilis N (2013) General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu. Corros Sci 76:119–128

    CAS  Google Scholar 

  7. El-Menshawy K, El-Sayed AWA, El-Bedawy ME, Ahmed HA, El-Raghy SM (2012) Effect of aging time at low aging temperatures on the corrosion of aluminium alloy 6061. Corros Sci 54:167–173

    CAS  Google Scholar 

  8. Larsen MH, Walmsley JC, Lunder O, Nisancioglu K (2010) Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminium alloys. J Electrochem Soc 157:C61–C68

    CAS  Google Scholar 

  9. Kairy SK, Alam T, Rometsch PA, Davies CHJ, Banerjee R, Birbilis N (2016) Understanding the origins of intergranular corrosion in copper-containing Al–Mg–Si alloys. Metall Mater Trans A Phys Metall Mater Sci 47A:985–989

    Google Scholar 

  10. Guillaumin V, Mankowski G (2000) Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros Sci 42:105–125

    CAS  Google Scholar 

  11. Zhang WL, Frankel GS (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48:1193–1210

    CAS  Google Scholar 

  12. Chen MY, Deng YL, Tang JG, Fan ST, Zhang XM (2019) A study of the crystallographic pitting behavior of Al-0.54 Mg-0.66 Si aluminum alloy in acidic chloride solutions. Mater Charact 148:259–265

    CAS  Google Scholar 

  13. Zhang XX, Zhou XR, Hashimoto T et al (2017) The influence of grain structure on the corrosion behaviour of 2A97-T3 Al–Cu–Li alloy. Corros Sci 116:14–21

    CAS  Google Scholar 

  14. Zhang XX, Zhou XR, Hashimoto T et al (2018) Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: the influence of non-uniform precipitation. Corros Sci 132:1–8

    CAS  Google Scholar 

  15. Luo C, Zhou X, Thompson GE, Hughes AE (2012) Observations of intergranular corrosion in AA2024-T351: the influence of grain stored energy. Corros Sci 61:35–44

    CAS  Google Scholar 

  16. Ly R, Hartwig KT, Castaneda H (2018) Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061. Corros Sci 139:47–57

    CAS  Google Scholar 

  17. Guerin M, Alexis J, Andrieu E, Laffont L, Lefebvre W, Odemer G, Blanc C (2016) Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy. Corros Sci 102:291–300

    CAS  Google Scholar 

  18. Zhang XX, Jiao YB, Yu Y, Liu B, Hashimoto T, Liu HF, Dong ZH (2019) Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction. Corros Sci 155:1–12

    CAS  Google Scholar 

  19. Chakrabarti DJ, Laughlin DE (2004) Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci 49:389–410

    CAS  Google Scholar 

  20. Kairy SK, Rometsch PA, Diao K, Nie JF, Davies CHJ, Birbilis N (2016) Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure. Electrochim Acta 190:92–103

    CAS  Google Scholar 

  21. Kairy SK, Birbilis N, Rometsch PA, Davies CHJ (2015) The influence of copper additions and aging on the microstructure and metastable pitting of Al–Mg–Si alloys. Corrosion 71:1304–1307

    CAS  Google Scholar 

  22. Kairy SK, Rometsch PA, Davies C, Birbilis N (2017) On the intergranular corrosion and hardness evolution of 6xxx series Al-alloys as a function of Si: Mg ratio, Cu content and ageing condition. Corrosion 73:1280–1295

    CAS  Google Scholar 

  23. Kairy SK, Rometsch P, Davies C, Birbilis N (2017) On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series Al-alloys. Corrosion 73:87–99

    CAS  Google Scholar 

  24. Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy. Corros Sci 48:258–272

    CAS  Google Scholar 

  25. Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy. Corros Sci 48:3969–3987

    CAS  Google Scholar 

  26. Remoe MS, Marthinsen K, Westermann I, Pedersen KT, Royset J, Marioara C (2017) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 693:60–72

    Google Scholar 

  27. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta 52:7651–7659

    CAS  Google Scholar 

  28. Birbilis N, Buchheit RG (2005) Electrochemical characteristics of intermetallic phases in aluminum alloys—an experimental survey and discussion. J Electrochem Soc 152:B140–B151

    CAS  Google Scholar 

  29. Zander D, Schnatterer C, Altenbach C, Chaineux V (2015) Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires. Mater Des 83:49–59

    CAS  Google Scholar 

  30. Kumari S, Wenner S, Walmsley JC, Lunder O, Nisancioglu K (2019) Progress in understanding initiation of intergranular corrosion on AA6005 aluminum alloy with low copper content. J Electrochem Soc 166:C3114–C3123

    CAS  Google Scholar 

  31. Li H, Zhao PP, Wang ZX, Mao QZ, Fang BJ, Song RG, Zheng ZG (2016) The intergranular corrosion susceptibility of a heavily overaged Al–Mg–Si–Cu alloy. Corros Sci 107:113–122

    CAS  Google Scholar 

  32. De Pari L, Misiolek WZ (2008) Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling. Acta Mater 56:6174–6185

    Google Scholar 

  33. Minoda T, Yoshida H (2002) Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metall Mater Trans A Phys Metall Mater Sci 33:2891–2898

    Google Scholar 

  34. Wloka J, Hack T, Virtanen S (2007) Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys. Corros Sci 49:1437–1449

    CAS  Google Scholar 

  35. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204

    CAS  Google Scholar 

  36. Zhang XX, Zhou XR, Nilsson JO, Dong ZH, Cai CR (2018) Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: recrystallized and non-recrystallized structures. Corros Sci 144:163–171

    CAS  Google Scholar 

  37. Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N (2014) Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution. Corros Sci 87:504–516

    CAS  Google Scholar 

  38. Cabot PL, Garrido JA, Perez E, Moreira AH, Sumodjo PTA, Proud W (1995) Eis study of heat-treated Al–Zn–Mg alloys in the passive and transpassive potential regions. Electrochim Acta 40:447–454

    CAS  Google Scholar 

  39. Chen WC, Wen TC, Gopalan A (2002) Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth Met 128:179–189

    CAS  Google Scholar 

  40. Suter T, Alkire RC (2001) Microelectrochemical studies of pit initiation at single inclusions in Al 2024-T3. J Electrochem Soc 148:B36–B42

    CAS  Google Scholar 

  41. Tan L, Allen TR (2010) Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 52:548–554

    CAS  Google Scholar 

  42. Yang WC, Ji SX, Li Z, Wang MP (2015) Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al–Mg–Si–Cu alloy. J Alloy Compd 624:27–30

    CAS  Google Scholar 

  43. Liu Y, Zhou X, Thompson GE, Hashimoto T, Scamans GM, Afseth A (2007) Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater 55:353–360

    CAS  Google Scholar 

  44. Zhang RF, Qiu Y, Qi YS, Birbilis N (2018) A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al–Mg alloy. Corros Sci 133:1–5

    CAS  Google Scholar 

  45. Wang ZX, Zhu F, Zheng K et al (2018) Effect of the thickness reduction on intergranular corrosion in an under-aged Al–Mg–Si–Cu alloy during cold-rolling. Corros Sci 142:201–212

    CAS  Google Scholar 

  46. Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater 58:994–997

    CAS  Google Scholar 

  47. Soltis J (2015) Passivity breakdown, pit initiation and propagation of pits in metallic materials—review. Corros Sci 90:5–22

    CAS  Google Scholar 

  48. Eckermann F, Suter T, Uggowitzer P, Afseth A, Schmutz P (2008) The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim Acta 54:844–855

    CAS  Google Scholar 

  49. Shen PY, Tang JG, Ye LY, Duan CX, Den YL (6005A) Effect of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A. Chin J Mater Res 32:751–758 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation (Project No. 51474240) and Provincial Science and Technology Major Project of Hunan province (Project No. 2016KG1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichun Jiang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Tang, J., Ma, W. et al. Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures. J Mater Sci 55, 10833–10848 (2020). https://doi.org/10.1007/s10853-020-04692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04692-6

Navigation