Skip to main content
Log in

NADPH-guided synthesis of iodide-responsive nanozyme: synergistic effects in nanocluster growth and peroxidase-like activity

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reduced coenzyme II acts as both reducing and capping agents in the growth of AgPd nanoclusters within a suitable range of [K2Pd(NO2)4]/[AgNO3]. A remarkable acceleration occurs in the growth kinetics of AgPd nanoclusters with respect to monometallic Pd or Ag. AgPd nanoclusters display a marked electron donation from Ag to Pd, thereby contributing to the enhancement of metallic Pd0 atoms. The AgPd nanoclusters exhibit better peroxidase mimicking activities relative to their monometallic counterparts. Addition of iodide ions significantly inhibits the peroxidase mimicking activity of Ag1Pd1 nanozyme. Hence, the Ag1Pd1-catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2 is greatly suppressed. The peroxidase-like activity of Ag1Pd1 nanozyme exhibits a sensitive response to iodide ions in the range of 0.5 ~ 180 nM. AgPd nanozyme possesses a desirable selectivity toward iodide ions with respect to sulfide ions. This work would provide guidance for developing biomimetic nanomaterials in the areas of biosensing, separation, nanotechnology and green synthesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Singh S, Tripathi P, Kumar N, Nara S (2017) Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron 92:280–286. https://doi.org/10.1016/j.bios.2016.11.011

    Article  CAS  Google Scholar 

  2. Ge C, Fang G, Shen X, Chong Y, Wamer WG, Gao X, Chai Z, Chen C, Yin JJ (2016) Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 10:10436–10445. https://doi.org/10.1021/acsnano.6b06297

    Article  CAS  Google Scholar 

  3. Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Mikrochim Acta 185:448. https://doi.org/10.1007/s00604-018-2976-2

    Article  CAS  Google Scholar 

  4. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. https://doi.org/10.1039/c3cs35486e

    Article  CAS  Google Scholar 

  5. Wang XY, Gao XJ, Qin L, Wang CD, Song L, Zhou YN, Zhu GY, Cao W, Lin SC, Zhou LQ, Wang K, Zhang HG, Zhong J, Wang P, Gao XF, Wei H (2019) Eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun 10:704. https://doi.org/10.1038/s41467-019-08657-5

    Article  CAS  Google Scholar 

  6. Tegeder P, Freitag M, Chepiga KM, Muratsugu S, Moeller N, Lamping S, Tada M, Glorius F, Ravoo BJ (2018) N-heterocyclic carbene-modified Au-Pd alloy nanoparticles and their application as biomimetic and heterogeneous catalysts. Chem-Eur J 24:18682–18688. https://doi.org/10.1002/chem.201803274

    Article  CAS  Google Scholar 

  7. Wu J, Qin K, Yuan D, Tan J, Qin L, Zhang X, Wei H (2018) Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl Mater Interfaces 10:12954–12959. https://doi.org/10.1021/acsami.7b17945

    Article  CAS  Google Scholar 

  8. Lien CW, Tseng YT, Huang CC (2014) Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 86:2065–2072. https://doi.org/10.1021/ac4036789

    Article  CAS  Google Scholar 

  9. Juhi S, Rahul P, Ragini S, Ajay SK, Sanjay S (2015) ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456:100–107. https://doi.org/10.1016/j.jcis.2015.06.015

    Article  CAS  Google Scholar 

  10. Hu L, Liao H, Feng LY, Wang M, Fu WS (2018) Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal Chem 90:6247–6252. https://doi.org/10.1021/acs.analchem.8b00885

    Article  CAS  Google Scholar 

  11. Zhao Y, Li H, Lopez A, Su H, Liu J (2020) Promotion and Inhibition of the oxidase-mimicking activity of nanoceria by phosphate, polyphosphate, and DNA. ChemBioChem 21:2178–2186. https://doi.org/10.1002/cbic.202000049

    Article  CAS  Google Scholar 

  12. Vallabani S, Vinu A, Singh S (2020) Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci 567:154–164. https://doi.org/10.1016/j.jcis.2020.01.099

    Article  CAS  Google Scholar 

  13. Zhao YL, Wang YW, Avi M, Wang YQ, Vivek M, Su HJ, Liu JW (2019) Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11:17841–17850. https://doi.org/10.1039/c9nr05346h

    Article  CAS  Google Scholar 

  14. Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Sign 10:179–206. https://doi.org/10.1089/ars.2007.1672

    Article  CAS  Google Scholar 

  15. Sazanov AL, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from thermus thermophilus. Science 311:1430–1436. https://doi.org/10.1126/science.1123809

    Article  CAS  Google Scholar 

  16. Yang JD, Chen BL, Zhu XQ (2018) New insight into the mechanism of NADH model oxidation by metal ions in nonalkaline media. J Phys Chem B 122:6888–6898. https://doi.org/10.1021/acs.jpcb.8b03453

    Article  CAS  Google Scholar 

  17. Liang P, Yu H, Guntupalli B, Xiao Y (2015) Paper-based device for rapid visualization of NADH based on dissolution of gold nanoparticles. ACS Appl Mater Interfaces 7:15023–15030. https://doi.org/10.1021/acsami.5b04104

    Article  CAS  Google Scholar 

  18. Brumaghim JL, Li Y, Henle E, Linn S (2003) Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504. https://doi.org/10.1074/jbc.M306251200

    Article  CAS  Google Scholar 

  19. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations. Angew Chem Int Ed 43:4519–4522. https://doi.org/10.1002/anie.200460608

    Article  CAS  Google Scholar 

  20. Zheng S, Gu H, Yin D, Zhang J, Li W, Fu Y (2020) Biogenic synthesis of AuPd nanocluster as a peroxidase mimic and its application for colorimetric assay of acid phosphatase. Colloid Surface A 589:124444. https://doi.org/10.1016/j.colsurfa.2020.124444

    Article  CAS  Google Scholar 

  21. Pienpinijtham P, Han XX, Ekgasit S, Ozaki Y (2011) Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles. Anal Chem 83:3655–3662. https://doi.org/10.1021/ac200743j

    Article  CAS  Google Scholar 

  22. Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H (2015) Smart albumin-biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater 27:3874–3882. https://doi.org/10.1002/adma.201500229

    Article  CAS  Google Scholar 

  23. Liu Y, Zheng Y, Ding D, Guo R (2017) Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33:13811–13820. https://doi.org/10.1021/acs.langmuir.7b03430

    Article  CAS  Google Scholar 

  24. Wang M, Wu Z, Yang J, Wang G, Wang H, Cai W (2012) Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 4:4087–4090. https://doi.org/10.1039/C2NR30169E

    Article  CAS  Google Scholar 

  25. Zhang X, Zhou W, Yuan Z, Lu C (2015) Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods. Analyst 140:7443–7450. https://doi.org/10.1039/C5AN01665G

    Article  CAS  Google Scholar 

  26. Deng HH, Weng SH, Huang SL, Zhang LN, Liu AL, Lin XH, Chen W (2014) Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 852:218–222. https://doi.org/10.1016/j.aca.2014.09.023

    Article  CAS  Google Scholar 

  27. He SB, Chen FQ, Xiu LF, Peng HP, Deng HH, Liu AL, Chen W, Hong GL (2020) Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan–coated palladium nanozyme. Anal Bioanal Chem 412:499–506. https://doi.org/10.1007/s00216-019-02270-7

    Article  CAS  Google Scholar 

  28. Gorbunova MO, Baulina AA, Kulyaginova MS, Apyari VV, Furletov AA, Volkov PA, Bochenkov VE, Starukhin AS, Dmitrienko SG (2019) Dynamic gas extraction of iodine in combination with a silver triangular nanoplate-modified paper strip for colorimetric determination of iodine and of iodine-interacting compounds. Mikrochim Acta 186:1–9. https://doi.org/10.1007/s00604-019-3300-5

    Article  CAS  Google Scholar 

  29. Li X, Pu Z, Zhou H, Zhang W, Niu X, He Y, Xu X, Qiu F, Pan J, Ni L (2018) Synergistically enhanced peroxidase-like activity of Pd nanoparticles dispersed on CeO2 nanotubes and their application in colorimetric sensing of sulfhydryl compounds. J Mater Sci 53:13912–13923. https://doi.org/10.1007/s10853-018-2657-x

    Article  CAS  Google Scholar 

  30. Chen J, Liu L, Liu X, Liao L, Zhuang S, Zhou S, Yang J, Wu Z (2017) Gold-doping of double-crown Pd nanoclusters. Chem-Eur J 23:18187–18192. https://doi.org/10.1002/chem.201704413

    Article  CAS  Google Scholar 

  31. Zhuang Z, Yang Q, Chen W (2019) One-step rapid and facile synthesis of subnanometer-sized Pd6(C12H25S)11 clusters with ultra-high catalytic activity for 4-nitrophenol reduction. ACS Sustain Chem Eng 7:2916–2923. https://doi.org/10.1021/acssuschemeng.8b06637

    Article  CAS  Google Scholar 

  32. Barik SK, Chiu TH, Liu YC, Chiang MH, Gam F, Chantrenne I, Kahlal S, Saillard JY, Liu CW (2019) Mono- and hexa-palladium doped silver nanoclusters stabilized by dithiolates. Nanoscale 11:14581–14586. https://doi.org/10.1039/c9nr05068j

    Article  CAS  Google Scholar 

  33. Li J, Wang M, Liu G, Zhang L, He Y, Xing X, Qian Z, Zheng J, Xu C (2018) Enhanced iodide removal from water by nano-silver modified anion exchanger. Ind Eng Chem Res 57:17401–17408. https://doi.org/10.1021/acs.iecr.8b04635

    Article  CAS  Google Scholar 

  34. Xu X, Wang L, Zou X, Wu S, Pan J, Li X, Niu X (2019) Highly sensitive colorimetric detection of arsenite based on reassembly-induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme. Sensor Actuat B: Chem 298:126876. https://doi.org/10.1016/j.snb.2019.126876

    Article  CAS  Google Scholar 

  35. Dai S, Wu X, Zhang J, Fu Y, Li W (2018) Coenzyme A-regulated Pd nanocatalysts for formic acid-mediated reduction of hexavalent chromium. Chem Eng J 351:959–966. https://doi.org/10.1016/j.cej.2018.06.138

    Article  CAS  Google Scholar 

  36. Liu Y, Xiang Y, Zhen Y, Guo R (2017) Halide ion-induced switching of gold nanozyme activity based on Au-X interactions. Langmuir 33:6372–6381. https://doi.org/10.1021/acs.langmuir.7b00798

    Article  CAS  Google Scholar 

  37. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  Google Scholar 

  38. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Accounts Chem Res 47:1097–1105. https://doi.org/10.1021/ar400250z

    Article  CAS  Google Scholar 

  39. Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjugate Chem 28:2903–2909. https://doi.org/10.1021/acs.bioconjchem.7b00673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21878225, 21776215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Yan Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Zhang, Q., Yin, D. et al. NADPH-guided synthesis of iodide-responsive nanozyme: synergistic effects in nanocluster growth and peroxidase-like activity. J Mater Sci 56, 4909–4921 (2021). https://doi.org/10.1007/s10853-020-05589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05589-0

Navigation