Skip to main content
Log in

Dielectric features, relaxation dynamics and a.c. conductivity studies on Ag+ mixed lead arsenate glass ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the influence of silver ions on a.c. conductivity and dielectric properties of lead arsenate glass ceramics. PbO–As2O3 glasses mixed with different concentrations of Ag2O were prepared by conventional melt quenching technique and later were ceramicized by heat treatment at crystallization temperature for about 72 h. The prepared samples were characterized by XRD, SEM and DSC techniques. The SEM studies have indicated the samples are embedded with different crystal phases of varying sizes from 0.2 to 1.0 µm and the fraction of crystal phases as well as the size of the crystallites increased with increase of Ag2O concentration. The X–ray diffraction studies have revealed that the samples composed of different crystal phases viz., Ag3AsO4, AgPb4(AsO4)3, Pb2As2O5 and PbAs2O4 entrenched in the residual amorphous phase. The spectroscopic studies viz., optical absorption and IR spectroscopic studies have revealed a gradual increase in the degree of depolymerization of the glass network with increase in the concentration of Ag2O. Photoluminescence studies have indicated that the investigated glass ceramics contain silver ion clusters; the concentration of such clusters is predicted to be higher in the samples containing higher content of Ag2O. Finally, we have carried out extensive studies on dielectric properties viz., dielectric constant, loss, electric moduli, impedance spectra and a.c. conductivity over broad ranges of continuous frequencies (3–100 kHz) and temperatures (298–600 K). The obtained results were quantitatively analyzed in terms of different polarization mechanisms. The relaxation effects exhibited by the electric moduli were analyzed in a detailed way by different methods. Spreading of relaxation times for dipoles was established and the possible dipoles responsible for such relaxation effects were suggested. The observed increase of a.c. conductivity with the concentration of Ag2O is attributed to the contribution of both polaronic and ionic transport. Finally, it is concluded that the samples crystallized with higher content of Ag2O exhibit predominantly ionic conductivity and hence such glass ceramics may be useful as solid electrolytes for solid state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Zhang, S. Liu, J. Mater. Sci. 28, 6456 (2017)

    Google Scholar 

  2. P. Naresh, G. Naga Raju, M. Srinivas Reddy, T. Venkatappa Rao, I.V. Kityk, N. Veeraiah, J. Mater. Sci. 25, 4902 (2014)

    Google Scholar 

  3. A.K. Yadav, C.R. Gautam, P. Singh, J. Mater. 26, 5001 (2015)

    Google Scholar 

  4. A. Subba Rao, J. Ashok, B. Suresh, G. Naga Raju, N. Venkatramaiah, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, J. Alloys Compd. 712, 672 (2017)

    Article  Google Scholar 

  5. Y. Gandhi, N. Krishna Mohan, N. Veeraiah, J. Non-Cryst. Solids 357, 1193 (2011)

    Article  Google Scholar 

  6. Q. Mei, R.T. Hart, C.J. Benmore, S. Amin, K. Leinenweber, J.L. Yarger, J. Non-Cryst. Solids 353, 1755 (2007)

    Article  Google Scholar 

  7. G. Srinivasarao, N. Veeraiah, J. Solid State Chem 166, 104 (2002)

    Article  Google Scholar 

  8. K. Nassau, Bell Syst. Tech. J. 60, 327 (1981)

    Article  Google Scholar 

  9. C.J. Jeon, E.S. Kim, J.H. Cho, Mater. Res. Bull. 96, 54 (2017)

  10. A. Siva Sesha Reddy, A. Ingram, M.G. Brik, M. Kostrzewa, P. Bragiel, V. Ravi Kumar, N. Veeraiah, J. Am. Ceram. Soc. 10, 4066 (2017)

  11. H.J. Wang, B.T. Li, H.X. Lin, L. Luo, J. Mater. Sci. 27, 2860 (2016)

    Google Scholar 

  12. G. Murali Krishna, B. Anila Kumari, M. Srinivasa Reddy, N. Veeraiah, J.Solid State Chem. 180, 2747 (2007)

    Article  Google Scholar 

  13. N. Isaka, K. Ohkawa, H. Kiyono, H. Itoh, Junichi Takahashi, J. Mater. Sci. 19, 1233 (2008)

    Google Scholar 

  14. P. Naresh, G. Nagaraju, Y. Gandhi, M. Piasecki, N. Veeraiah, J. Amer. Ceram. Soc 98, 413 (2015)

    Article  Google Scholar 

  15. M. Durandurdu, J. Non-Cryst. Solids 436, 18 (2016)

    Article  Google Scholar 

  16. R. Ciceo Lucacel, I. Ardelean, J. Optoelectron. Adv. Mater. 8, 1124 (2006)

    Google Scholar 

  17. J. Wang, Q. Huang, T. Li, B. Xin, S. Chen, X. Guo, C. Liu, Y. Li, J. Environ. Manag. 159, 11 (2015)

    Article  Google Scholar 

  18. J. Tang, Y. Liu, H. Li, Z. Tan, D. Li, Chem. Commun. 49, 5498 (2013)

    Article  Google Scholar 

  19. M. Nagarjuna, T. Satyanarayana, Y. Gandhi, N. Veeraiah, J. Alloys Compd. 479, 549 (2009)

    Article  Google Scholar 

  20. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, (Wiley, New York, 1999)

  21. G. Nagarjuna, T. Satyanarayana, V. Ravi Kumar, P.V.V. Satyanarayana, N. Veeraiah, Philos. Mag 89, 2255 (2009)

    Article  Google Scholar 

  22. A. Gholami, T.N. Amirabad, M. Maddahfar, J. Mater. Sci. 3, 1 (2017)

    Google Scholar 

  23. S. Kabi, A. Ghosh, Solid State Ion. 187, 39 (2011)

    Article  Google Scholar 

  24. A. Ewald, D. Hösel, S. Patel, L.M. Grover, U. Gbureck, Acta Biomater. 7, 4064 (2011)

    Article  Google Scholar 

  25. K. Sklepić, M. Vorokhta, P. Mošner, L. Koudelka, A. Moguš-Milanković, J. Phys. Chem. B 118, 12050 (2014)

    Article  Google Scholar 

  26. S.S. Das, N.B. Singh, Mater. Res. Bull. 43, 3008 (2008)

    Article  Google Scholar 

  27. K. Naresh Kumar, B. Suresh, A. Ingram, M. Kostrzewa, P. Bragiel, V. Ravi Kumar, N. Veeraiah, Ceram. Int. 43, 4335 (2017)

    Article  Google Scholar 

  28. M.M. Ahmaed, C.A. Hogarth, M.N. Khan, J. Mater. Sci. 19, 4040 (1984)

    Article  Google Scholar 

  29. S. Bahfenne, L. Rintoul, J. Langhof, R.L. Frost, Am. Mineral. 97, 143 (2012)

    Article  Google Scholar 

  30. P.J. Dunn, D.R. Peacor, B.D. Struman, Paulmooreite, Sweden. Amer. Mineral. 64, 352 (1979)

    Google Scholar 

  31. F. Pertik, Z. Kristallogr. 184, 191 (1988)

    Article  Google Scholar 

  32. S. Md. Rakibuddin, R. Mandal, Anantha krishnan, New J. Chem. 41, 1380 (2017)

    Article  Google Scholar 

  33. C. Noguez, Opt. Mater. 27, 1204 (2005)

    Article  Google Scholar 

  34. T. Okamoto, I. Yamaguchi, J. Phys. Chem. B 38, 10321 (2003)

    Article  Google Scholar 

  35. V.M. Renteria, J. Garcia-Macedo, Colloids Surf. A 273, 1 (2006)

    Article  Google Scholar 

  36. E. Saion, E. Gharibshahi, K. Naghavi, Int. J. Mol. Sci. 14, 7880 (2013)

    Article  Google Scholar 

  37. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  Google Scholar 

  38. M. Manoth, K. Manzoor, M.K. Patra, P. Pandey, S.R. Vadera, N. Kumar, Mater. Res. Bull. 44, 714 (2009)

    Article  Google Scholar 

  39. E. Culea, P. Pascuta, M. Pustan, D.R. Tamas-Gavrea, L. Pop, I. Vida-Simiti, J. Non-Cryst. Solids 408, 18 (2015)

    Article  Google Scholar 

  40. E. Malchukova, B. Boizot, Mater. Res. Bull. 45, 1299 (2010)

    Article  Google Scholar 

  41. C.J.F. Böttcher, P. Bordewijk, Theory of Electrical Polarization. (Elsvier, Amsterdam, 1978)

    Google Scholar 

  42. P. Nageswara Rao, B.V. Raghavaiah, D. Krishna, N. Rao, Veeraiah, Mater. Chem. Phys. 91, 381 (2005)

    Article  Google Scholar 

  43. D.K. Durga, N. Veeraiah, J. Phys. Chem. Solids 64, 133 (2003)

    Article  Google Scholar 

  44. N.G. Mc Crum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids. (Wiley, London, 1967)

    Google Scholar 

  45. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    Article  Google Scholar 

  46. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. Part A: Appl. Sci. Manuf. 33, 375 (2002)

    Article  Google Scholar 

  47. S. Mohanty, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 25, 1180 (2014)

    Article  Google Scholar 

  48. S.R. Elliott, Physics of Amorphous Materials. (Longman, Essex, 1990)

    Google Scholar 

  49. H. Kahnt, J. Non-Cryst. Solids 203, 225 (1996)

    Article  Google Scholar 

  50. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  51. C. Filipič, A.M. Milanković, L. Pavić, K. Srilatha, N. Veeraiah, A. Leversustik, J. Appl.Phys. 112, 073705 (2012)

    Article  Google Scholar 

  52. G. Austin, N.F. Mott, Adv. Phys. 50, 757 (2001)

    Article  Google Scholar 

  53. A.M. Milanković, L. Pavić, K. Srilatha, Ch..Sr.i.n.i.v.a.s.a. Rao, T. Srikumar, Y. Gandhi, N. Veeraiah, J. Appl. Phys. 111, 013714 (2012)

    Article  Google Scholar 

  54. J. Ashok, N. Purnachand, J. Suresh Kumar, M. Srinivasa Reddy, B. Suresh, M.P.F. Graça, N. Veeraiah, J. Alloys Compd. 696, 1260 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Veeraiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.N., Kostrzewa, M., Ingram, A. et al. Dielectric features, relaxation dynamics and a.c. conductivity studies on Ag+ mixed lead arsenate glass ceramics. J Mater Sci: Mater Electron 29, 1153–1172 (2018). https://doi.org/10.1007/s10854-017-8018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8018-8

Navigation