Skip to main content

Advertisement

Log in

The role of Eu on the thermoluminescence induced by gamma radiation in nano hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Europium (Eu) doped hydroxyapatite (HAp) powders were prepared by microwave assisted hydrothermal method. A detailed structural examination of the HAp was performed through transmission electron microscopy and X-ray diffraction techniques. Analysis of thermoluminescent (TL) properties of the pure and Eu doped hydroxyapatite by exposing to different dosages of gamma radiation were also conducted. The characterization results show an appreciable influence of the Eu dopant on HAp TL signal, crystal sizes and the proportion of crystalline phases were identified. Rietveld analysis of the XRD patterns confirmed that the dominant hexagonal crystalline phase of pure HAp was diminished and an increase in monoclinic phase was observed accordingly with an increment in the Eu doping. This takes place due to the increment in crystal growth for monoclinic phase and a decrement in the crystal size of hexagonal phase. The thermoluminescence studies showed that Eu doped HAp (0.5 wt%) possess high intensity TL signal and there is a linear relationship between the TL Intensity and gamma radiation dosage in the range from 1.0 to 100 Gy. The results suggest that the Eu doped HAp can be considered as a radiation dosimeter material specifically for gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Kantharia, S. Naik, S. Apte, M. Kheur, S. Kheur, B. Kale, J. Dent. Res. Sci. Dev. 1(1), 15–19 (2014)

    Article  Google Scholar 

  2. L.L. Hench, J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    Article  Google Scholar 

  3. N. Roveri, M. Lafisco, Nanotechnol. Sci. Appl. 3, 107–125 (2010)

    Article  Google Scholar 

  4. X.-Y. Zhao, Y.-J. Zhu, J. Zhao, B.-Q. Lu, F. Chen, C. Qi, J. Wu, J. Colloid Interface Sci. 416, 11–18 (2014)

    Article  Google Scholar 

  5. N.F. Mohammad, R. Othman, F. Yee-Yeoh, Rev. Adv. Mater. Sci. 28, 138–147 (2014)

    Google Scholar 

  6. X.-Y. Zhao, Y.-J. Zhu, C. Qi, F. Chen, B.-Q. Lu, J. Zhao, J. Wu, Chem. Asian. J. 8, 1313–1320 (2013)

    Article  Google Scholar 

  7. W. Wei, R. Sun, Z. Jin, J. Cui, Z. Wei, Appl. Surf. Sci. 292, 1020–1029 (2014)

    Article  Google Scholar 

  8. S.L. Iconaru, M. Motelica-Heino, D. Predoi, J. Spectrosc. (2013). https://doi.org/10.1155/2013/284285

    Google Scholar 

  9. V. Rodríguez-Lugo, E. Salinas-Rodríguez, R.A. Vázquez, K. Alemán, A.L. Rivera. RSC Adv. 7, 7631–7639 (2017)

    Article  Google Scholar 

  10. V. Rodríguez Lugo, V.M. Castaño, E. Rubio-Rosas, Mater. Lett. 184, 265–268 (2016)

    Article  Google Scholar 

  11. V. Rodríguez-Lugo, C. Ángeles, A. de la Isla, V.M. Castaño, Int. J. Basic Appl. Sci. 4(4), 395–403 (2015)

    Article  Google Scholar 

  12. V. Rodríguez-Lugo, J. Sánchez Hernández, M.J. Arellano-Jiménez, P.H. Hernández-Tejeda, S. Recillas-Gispert, Microsc. Microanal. 11(6), 516–523 (2005)

    Article  Google Scholar 

  13. V. Rodríguez-Lugo, M. Hernández, C. Angeles-Chavez, Mater. Manuf. Process. 18(6), 903–913 (2003)

    Article  Google Scholar 

  14. V. Rodríguez-Lugo, J.A. Ascencio, C. Angeles-Chavez, A. Camacho-Bragado, V.M. Castaño, Mater. Technol. 16, 97–103 (2001)

    Article  Google Scholar 

  15. X. Zheng, M. Liu, J. Hui, D. Fan, H. Ma, X. Zhang, Y. Wang, Y. Wei, Phys. Chem. Chem. Phys. 17, 20301–20307 (2015)

    Article  Google Scholar 

  16. F. Ziaie, N. Hajiloo, A. Alipour, R. Amraei, S.I. Mehtieva, Radiat. Prot. Dosim. 145(4), 377–384 (2011)

    Article  Google Scholar 

  17. A. Zarinfar, M. Shafaei, F. Ziaie, Proced. Mater. Sci. 11, 293–298 (2015)

    Article  Google Scholar 

  18. R. Alvarez, T. Rivera, J. Guzman, M.C. Piña-Barba, J. Azorin, Appl. Radiat. Isot. 83, 192–195 (2014)

    Article  Google Scholar 

  19. M. Shafaei, F. Ziaie, D. Sardari, M.M. Larijani, Kerntechnik 80(1), 66–69 (2015)

    Article  Google Scholar 

  20. J. Zarate-Medina, K.J. Sandoval-Cedeño, A. Barrera-Villatoro, J. Lemus-Ruiz, T. Rivera-Montalvo, Appl. Radiat. Isot. 100, 50–54 (2015)

    Article  Google Scholar 

  21. C. Woda, C. Bassinet, F. Trompier, E. Bortolin, S.D. Monaca, P. Fattibene, Ann. Ist. Sanita 45(3), 297–306 (2009)

    Google Scholar 

  22. K. Madhukumar, H.K. Varma, M. Komath, T.S. Elias, V. Padmanabhan, M.K. Nair, Bull. Mater. Sci. 30(5), 527–534 (2007)

    Article  Google Scholar 

  23. N. Salah, S.S. Habib, Z.H. Khan, F. Djouider, Radiat. Phys. Chem. 80, 923–928 (2011)

    Article  Google Scholar 

  24. G. Villa-Sánchez, D. Mendoza-Anaya, G. Mondragon-Galicia, R. Pérez-Hernández, P.R. González-Martínez, O.F. Olea-Mejía, J. Radiat. Phys. Chem. 97, 118–125 (2014)

    Article  Google Scholar 

  25. G. Villa-Sánchez, D. Mendoza-Anaya, M.E. Fernández-García, L. Escobar-Alarcón, O.F. Olea Mejía, P.R. González-Martínez, Opt. Mater. 14, 1219–1226 (2014)

    Article  Google Scholar 

  26. J.A. Nieto, AIP Conf. Proc. (2004). https://doi.org/10.1063/1.1811814

  27. S.W. Lowe, S. Bodis, A. McClatchey, L. Remngton, H. Earl Ruley, D.E. Fisher, D.E. Housman, T. Jacks, Science 266(5186), 807–810 (1994)

    Article  Google Scholar 

  28. N.I. Zakariya, M. Kahn, J. Biosci. 2(9), 583–591 (2014)

    Google Scholar 

  29. K.A. da Silva Aquino, ISBN: 978-953-51-0316-5, InTech, (2012). http://www.intechopen.com/books/gammaradiation/sterilization-by-gamma-irradiation

  30. M. Pricaz, A.-C. Utâ., Romanian J. Biophys. 25(2), 143–162 (2015)

    Google Scholar 

  31. J.M.M. Walder, C.O. Calkins, Sci. Agric. Piracícaba 50(2), 157–165 (1993)

    Article  Google Scholar 

  32. V.J. Angadi, A.V. Anupama, R. Kumar, H.M. Somashekarappa, K. Praveena, B. Rudraswamy, B. Sahoo, Ceram. Int. 2, 5933–15939 (2016)

    Google Scholar 

  33. J. Angadi, S. Matteppanavar, R.B. Katti, B. Rudraswamy, K. Praveena, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4980760

  34. Teodoro Rivera. INTECH open science/open minds, 127–164 (2011). https://doi.org/10.5772/17423. http://www.intechopen.com

  35. S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdinad, R. Sandhya, K. Praveena, Mater. Res. Bull. 63, 58–66 (2015)

    Article  Google Scholar 

  36. K. Sadhana, S.R. Murthy, K. Praveena, Mater. Sci. Semicond. Process. 34, 305–311 (2015)

    Article  Google Scholar 

  37. P. Kuruva, P.R. Matli, B. Mohammad, S. Reddigari, S. Katlakunta, J. Magn. Magn. Mater. 382, 172–178 (2015)

    Article  Google Scholar 

  38. K. Praveena, K. Sadhana, H.-L. Liu, N. Maramu, G. Himanandini, J. Alloys Compd. 681, 499–507 (2016)

    Article  Google Scholar 

  39. K. Sadhana, R. Sandhya, S.R. Murthy, K. Praveena, Mater. Focus 3(4) (2014)

  40. K. Praveena, H.-W. Chen, H.-L. Liu, K. Sadhana, S.R. Murthy, J. Magn. Magn. Mater. 420, 129–142 (2016)

    Article  Google Scholar 

  41. S. Katlakunta, P. Raju, S.S. Meena, S. Srinath, R. Sandhya, P. Kuruva, S.R. Murthy, Phys. B Condens. Matter 448, 323–326 (2014)

    Article  Google Scholar 

  42. A. Verma, R. Dwivedi, R. Prasad, K.S. Bartwal, J. Nanoparticles (2013). https://doi.org/10.1155/2013/737831

    Google Scholar 

  43. Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 52, 10871–10878 (1998)

    Article  Google Scholar 

  44. G. Ma, X.Y. Liu, Cryst. Growth Design 9(7), 2991–2994 (2009)

    Article  Google Scholar 

  45. H. Suda, M. Yashima, M. Kakihana, M. Yoshimura, J. Phys. Chem. 99, 6752–6754 (1995)

    Article  Google Scholar 

  46. S. Kuśnieruk, J. Wojnarowicz, A. Chodara, T. Chudoba, S. Gierlotka, W. Lojkowski, Beilstein J. Nanotechnol. 7, 1586–1601 (2016). https://doi.org/10.3762/bjnano.7.153

    Article  Google Scholar 

  47. M. Shafaei, F. Ziaie, D. Sardaria, M.M. Larijani. Luminescence 31, 223–228 (2015)

    Article  Google Scholar 

  48. P.R. González, D. Mendoza-Anaya, L. Escobar-Alarcón, J. Luminesc. 195 (2017). https://doi.org/10.1016/j.jlumin.2017.11.050

Download references

Acknowledgements

This work was financially supported by the project PROMEP– UAEH– PTC–6669. Authors would like to thank to the Electron Microscopy and X-Ray Diffraction Laboratories at the ININ, CONACyT SENER-HIDROCARBUROS postdoctoral project and the CONACyT project INFR-2015-251767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rodríguez-Lugo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Anaya, D., Flores-Díaz, E., Mondragón-Galicia, G. et al. The role of Eu on the thermoluminescence induced by gamma radiation in nano hydroxyapatite. J Mater Sci: Mater Electron 29, 15579–15586 (2018). https://doi.org/10.1007/s10854-018-9147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9147-4

Navigation