Skip to main content
Log in

Efficient humidity-sensitive electrical response of annealed lithium substituted nickel ferrite (Li–NiFe2O4) nanoparticles under ideal, real and corrosive environments

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li–NiFe2O4 nanoparticles have been prepared via simple cost effective chemical co-precipitation method. X-ray diffraction analysis affirms the cubic spinel structure and particle size is ~ 32 nm. SEM and TEM analysis were revealed the needle shape of nanoparticles with agglomeration. XPS and FT-IR spectrum confirmed composition and usual behaviour of spinel ferrites. Band gap energy of material is 3.62 eV that imply semiconducting nature. Humidity sensor analysis is carried out three different environments in order to test the influence of medium stress factors on sensors parameters. Under these environments, Li–NiFe2O4 nanoparticles exhibit well sensing nature. Besides, the material displays high sensitivity at ideal environments and good stability in real environments. The results also show interesting characteristics of the maturing and aging process of humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005). https://doi.org/10.1166/sl.2005.045

    Article  CAS  Google Scholar 

  2. S. Sikarwar, B.C. Yadav, S. Singh, G.I. Dzhardimalieva, S.I. Pomogailo, N.D. Golubeva, A.D. Pomogailo, Fabrication of nanostructured yttria stabilized zirconia multilayered films and their optical humidity sensing capabilities based on transmission. Sens. Actuators B 232, 283–291 (2016). https://doi.org/10.1016/j.snb.2016.03.080

    Article  CAS  Google Scholar 

  3. T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B 228, 416–442 (2016). https://doi.org/10.1016/j.snb.2016.01.015

    Article  CAS  Google Scholar 

  4. P. Chaudhary, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, I.E. Uflyand, Synthesis and characterization of copper(II) nitrate polyacrylamide & its application as opto-electronic humidity sensor. Sens. Actuators A 263, 415–422 (2017). https://doi.org/10.1016/j.sna.2017.07.006

    Article  CAS  Google Scholar 

  5. I. Petrila, F. Tudorache, Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Mater. Lett. 108, 129–133 (2013)

    Article  CAS  Google Scholar 

  6. F. Tudorache, I. Petrila, T. Slatineanu, A.M. Dumitrescu, A.R. Iordan, M. Dobromir, M.N. Palamaru, Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. J. Mater. Sci. 27, 272–278 (2016). https://doi.org/10.1007/s10854-015-3750-4

    Article  CAS  Google Scholar 

  7. R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. Biomed. 4, 141–154 (2012). https://doi.org/10.1080/19430892.2012.676918

    Article  CAS  Google Scholar 

  8. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Synthesis of metal ferrite (MFe2O4, M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. 8, 358–370 (2013). https://doi.org/10.1080/17458080.2012.690893

    Article  CAS  Google Scholar 

  9. E.R. Kumar, R. Jayaprakash, G.S. Devi, P.S.P. Reddy, Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications. Sens. Actuators B 191, 186–191 (2014)

    Article  Google Scholar 

  10. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A 167, 332–337 (2011). https://doi.org/10.1016/j.sna.2011.03.010

    Article  CAS  Google Scholar 

  11. F. Tudorache, P.D. Popa, M. Dobromir, F. Iacomi, Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating. Mater. Sci. Eng. 178, 1334–1338 (2013)

    Article  CAS  Google Scholar 

  12. C. Virlan, F. Tudorache, A. Pui, Tertiary NiCuZn ferrites for improved humidity sensors: a systematic study. Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.03.005

    Article  Google Scholar 

  13. B.C. Yadav, K.S. Chauhan, S. Singh, R.K. Sonker, S. Sikarwar, R. Kumar, Growth and characterization of sol–gel processed rectangular shaped nanostructured ferric oxide thin film followed by humidity and gas sensing. J. Mater. Sci. 28, 5270–5280 (2017). https://doi.org/10.1007/s10854-016-6184-8

    Article  CAS  Google Scholar 

  14. R. Srivastava, B.C. Yadav, M. Singh, T.P. Yadav, Synthesis, characterization of nickel ferrite and its uses as humidity and LPG sensors. J. Inorg. Organomet. Polym Mater. (2016). https://doi.org/10.1007/s10904-016-0425-4

    Article  Google Scholar 

  15. I. Petrila, K. Popa, F. Tudorache, Microstructure, electrical and humidity sensing properties of light rare earths zirconates. Sens. Actuators A 247, 156–161 (2016). https://doi.org/10.1016/j.sna.2016.05.039

    Article  CAS  Google Scholar 

  16. A.M. Dumitrescu, G. Lisa, A.R. Iordan, F. Tudorache, I. Petrila, A.I. Borhan, M.N. Palamaru, C. Mihailescu, L. Leontie, C. Munteanu, Ni ferrite highly organized as humidity sensors. Mater. Chem. Phys. 156, 170–179 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.044

    Article  CAS  Google Scholar 

  17. V. Manikandan, A. Vanitha, E.R. Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2016.11.034

    Article  Google Scholar 

  18. E.R. Kumar, C. Srinivas, M.S. Seehra, M. Deepty, I. Pradeep, A.S. Kamzin, M.V.K. Mehar, N.K. Mohan, Particle size dependence of the magnetic, dielectric and gas sensing properties of Co substituted NiFe2O4 nanoparticles. Sens. Actuators A 279, 10–16 (2018)

    Article  CAS  Google Scholar 

  19. Y. Köseoğlu, İ Aldemir, F. Bayansal, S. Kahraman, H.A. Çetinkara, Synthesis, characterization and humidity sensing properties of Mn0.2Ni0.8Fe2O4 nanoparticles. Mater. Chem. Phys. 139, 789–793 (2013). https://doi.org/10.1016/j.matchemphys.2013.02.033

    Article  CAS  Google Scholar 

  20. V. Manikandan, A. Vanitha, E.R. Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 426, 11–17 (2017). https://doi.org/10.1016/j.jmmm.2016.11.034

    Article  CAS  Google Scholar 

  21. S. Sikarwar, B.C. Yadav, Opto-electronic humidity sensor: a review. Sensors Actuators A Phys. 233, 54–70 (2015). https://doi.org/10.1016/j.sna.2015.05.007

    Article  CAS  Google Scholar 

  22. Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, S.S. Kim, H.W. Kim, Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs. Appl. Surf. Sci. 413, 242–252 (2017). https://doi.org/10.1016/j.apsusc.2017.03.290

    Article  CAS  Google Scholar 

  23. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel method. Ceram. Int. 42, 6136–6144 (2016). https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  CAS  Google Scholar 

  24. Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, S. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B 209, 515–523 (2015). https://doi.org/10.1016/j.snb.2014.12.010

    Article  CAS  Google Scholar 

  25. Y.-C. Lu, E.J. Crumlin, G.M. Veith, J.R. Harding, E. Mutoro, L. Baggetto, N.J. Dudney, Z. Liu, Y. Shao-Horn, In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Rep. 2, 715 (2012). https://doi.org/10.1038/srep00715

    Article  CAS  Google Scholar 

  26. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications, Prog. Nat. Sci. Mater. Int. 25, 12–21 (2015). https://doi.org/10.1016/j.pnsc.2015.01.012

    Article  CAS  Google Scholar 

  27. V. Manikandan, A. Vanitha, E.R. Kumar, J. Chandrasekaran, Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 Nanoparticles, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2016.09.077

    Article  Google Scholar 

  28. J. Liu, T. Xu, M. Gong, F. Yu, Y. Fu, Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment, 55, 281–284 (2002). https://doi.org/10.1016/j.memsci.2006.06.027

    Article  CAS  Google Scholar 

  29. W.S. Sheldrick, M. Wachhold, M. Rozman, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites. J. Am. Ceram. Soc. 36, 2449–2455 (1997). https://doi.org/10.1002/anie.199702061

    Article  Google Scholar 

  30. J. Liu, T. Xu, M. Gong, F. Yu, Y. Fu, Fundamental studies of novel inorganic-organic charged zwitterionic hybrids. 4. New hybrid zwitterionic membranes prepared from polyethylene glycol (PEG) and silane coupling agent. J. Membr. Sci. 283, 190–200 (2006). https://doi.org/10.1016/j.memsci.2006.06.027

    Article  CAS  Google Scholar 

  31. W.S. Sheldrick, M. Wachhold, Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Ed. Engl. 36, 206–224 (1997). https://doi.org/10.1002/anie.199702061

    Article  CAS  Google Scholar 

  32. R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, A. Sharma, S.P. Nehra, S. Duhan, K. Kailasam, An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride. J. Mater. Chem. A 5, 14134–14143 (2017). https://doi.org/10.1039/C7TA02860A

    Article  CAS  Google Scholar 

  33. V. Manikandan, S. Sikarwar, B.C. Yadav, R.S. Mane, Fabrication of Tin substituted Nickel Ferrite (Sn-NiFe2O4) thin film and its application as opto-electronic humidity sensor. Sens. Actuators A (2018). https://doi.org/10.1016/j.sna.2018.01.059

    Article  Google Scholar 

Download references

Acknowledgements

We thank De Ming Zhu for assistance with XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Manikandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, V., Petrila, I., Vigneselvan, S. et al. Efficient humidity-sensitive electrical response of annealed lithium substituted nickel ferrite (Li–NiFe2O4) nanoparticles under ideal, real and corrosive environments. J Mater Sci: Mater Electron 29, 18660–18667 (2018). https://doi.org/10.1007/s10854-018-9987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9987-y

Navigation