Skip to main content

Advertisement

Log in

Pressure sensor based on porous polydimethylsiloxane with embedded gold nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A compressible capacitive mechanical pressure sensor has been developed. Porous polydimethylsiloxane (p-PDMS) has been chosen as dielectric insulator because of its dielectric constant value. Gold nanoparticles have been embedded in p-PDMS to change the dielectric properties and to tune its elasticity. p-PDMS and its nanocomposite have been synthesized using the sugar leaching process. The p-PDMS physical characterization, with and without the gold nanoparticles, has been conducted to investigate its elastic response to compressive stresses as a function of both the polymer preparation thermal treatment and the gold nanoparticle concentration. A sensor operating in a low-pressure range between about 100 Pa and 10 kPa with a strain ranging between about 5% and 95% has been realized. Dielectric constant and electrical resistivity measurements have been performed using samples with a starting volume of the order of 1 cm3. The relationship between the dielectric constant, the electrical resistivity and the compressive stress/strain has been also deduced. The described sensor is flexible, biocompatible, water equivalent and can have applications in biomedicine (orthopedic, dentistry), engineering (stress–strain measurements, robotics), and microelectronics (microbalances, stress test on electronic devices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Tarjányi, D. Káčik, M. Uhríčik, P. Palček, PMMA birefringence-based optical sensor of load. Proc. SPIE 11354, 113542L (2020). https://doi.org/10.1117/12.2555881

    Article  Google Scholar 

  2. K.F. Lei, K.F. Lee, M.Y. Lee, Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng. 99, 1–5 (2012)

    Article  CAS  Google Scholar 

  3. J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O.M. Omisore, L. Wang, H. Li, Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 8, 345–360 (2018)

    Article  Google Scholar 

  4. D.S. Kim, Y.J. Jeong, B.K. Lee, A. Shanmugasundaram, D.W. Lee, Piezoresistive sensor-integrated PDMS cantilever: a new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens. Actuators B 240, 566–572 (2017)

    Article  CAS  Google Scholar 

  5. A.S. Cruz-Felix, A. Santiago-Alvarado, J. Marquez-Garcí, J. Gonzalez-García, PDMS samples characterization with variations of synthesis parameters for tunable optics applications. Heliyon 6, e03064 (2020)

    Google Scholar 

  6. V. Borjanovića, L. Bistričić, I. Vlasov, K. Furić, I. Zamboni, M. Jakšić, O. Shenderova, Influence of proton irradiation on the structure and stability of poly(dimethylsiloxane)and poly(dimethylsiloxane)-nanodiamond composite. J. Vac. Sci. Technol. B 27(6), 2396–2403 (2009)

    Article  Google Scholar 

  7. Material Properties Database PDMS, Actual Website 2020 http://www.mit.edu/~6.777/matprops/pdms.htm

  8. R. Seghir, S. Arscott, Extended PDMS stiffness range for flexible systems. Sens. Actuators A 230, 33–39 (2015)

    Article  CAS  Google Scholar 

  9. A.R.M. Dalod, O.G. Grendal, A.B. Blichfeld, V. Furtula, J. Pérez, L. Henriksen, T. Grande, M.A. Einarsrud, Structure and Optical Properties of titania-PDMS hybrid nanocomposites prepared by in situ non-aqueous synthesis. Nanomaterials 7, 460 (2017). https://doi.org/10.3390/nano7120460

    Article  CAS  Google Scholar 

  10. L. Torrisi, M. Cutroneo, A. Torrisi, G. Di Marco, B. Fazio, L. Silipigni, IR ns pulsed laser irradiation of Polydimethylsiloxane in vacuum. Vacuum 177, 109361 (2020)

    Article  CAS  Google Scholar 

  11. S. Vlassov, S. Oras, M. Antsov, I. Sosnin, B. Polyakov, A. Shutka, M.Y. Krauchanka, L.M. Dorogin, Adhesion and mechanical properties of PDMS-based materials probed with AFM: a review. Rev. Adv. Mater. Sci. 56, 62–78 (2018)

    Article  CAS  Google Scholar 

  12. D. Zhu, S. Handschuh-Wang, X. Zhou, Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5, 16467–16497 (2017)

    Article  CAS  Google Scholar 

  13. P. Pan, Z. Bian, X. Song, X. Zhou, Properties of porous PDMS and stretchability of flexible electronics in moist environment. J. Appl. Mech. 87(10), 101009–101018 (2020)

    Article  CAS  Google Scholar 

  14. M.N. Biutty, J.M. Koo, M. Zakia, P.L. Handayani, U.H. Choi, S.I.L. Yoo, Dielectric control of porous polydimethylsiloxane elastomers with Au nanoparticles for enhancing the output performance of triboelectric nanogenerators. RSC Adv. 10, 21309–21317 (2020)

    Article  CAS  Google Scholar 

  15. https://it.farnell.com/dowsil-formerly-dow-corning/sylgard-184-1-1kg/elastomer-clear-184-1-1kg/dp/101697

  16. Sigma-Aldrich actual website 2020: https://www.sigmaaldrich.com/https://www.sigmaaldrich.com/catalog/product/aldrich/741957?lang=en&region=CZ

  17. M. Cutroneo, A. Torrisi, V. Ryukhtin, M. Dopita, L. Silipigni, A. Mackova, P. Malinsky, P. Slepicka, L. Torrisi, Polydimethylsiloxane containing gold nanoparticles for optical applications. J. Inst. 15, C03044 (2020). https://doi.org/10.1088/1748-0221/15/03/C03044

    Article  Google Scholar 

  18. I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014)

    Article  CAS  Google Scholar 

  19. L. Silipigni, G. Salvato, B. Fazio, G. Di Marco, E. Proverbio, M. Cutroneo, A. Torrisi, L. Torrisi, Temperature sensor based on IR-laser reduced Graphene Oxide. J. Inst 15, C04006 (2020). https://doi.org/10.1088/1748-0221/15/04/C04006

    Article  CAS  Google Scholar 

  20. L. Chen, X. Chen, Z. Zhang, T. Li, T. Zhao, X. Li, J. Zhang, PDMS-based capacitive pressure sensor for flexible transparent electronics. J. Sens. (2019). https://doi.org/10.1155/2019/1418374

    Article  Google Scholar 

  21. S. El-Molla, A. Albrecht, E. Cagatay, P. Mittendorfer, G. Cheng, P. Lugli, J.F. Salmerón, A. Rivadeneyra, Integration of a thin film PDMS-based capacitive sensor for tactile sensing in an electronic skin. J. Sens. (2016). https://doi.org/10.1155/2016/1736169

    Article  Google Scholar 

  22. S.H. Bae, Y. Lee, B.K. Sharma, H.J. Lee, J.H. Kim, J.H. Ahn, Graphene-based transparent strain sensor. Carbon 52, 236–242 (2013)

    Article  Google Scholar 

  23. Y. Zheng, Y. Li, K. Dai, Y. Wang, G. Zheng, C. Liu, C. Shen, A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156, 276–286 (2018)

    Article  CAS  Google Scholar 

  24. A. Mata, A.J. Fleischman, S. Roy, Characterization of Polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevice 7(4), 281–293 (2005)

    Article  CAS  Google Scholar 

  25. W.M. Lee, A. Upadhya, P.J. Reece, T.G. Phan, Fabricating low cost and high performance elastomer lenses using hanging droplets. Biomed. Opt. Express 5(5), 1627 (2014). https://doi.org/10.1364/BOE.5.001626

    Article  Google Scholar 

Download references

Acknowledgements

Part of this research has been realized at the CANAM (Centre of Accelerators and Nuclear Analytical Methods) infrastructure LM 2015056 and has been supported by Project GACR 19-02482S. This publication was supported by OP RDE, MEYS, Czech Republic under the project CANAM OP, CZ.02.1.01/0.0/0.0/16_013/0001812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Silipigni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silipigni, L., Salvato, G., Torrisi, A. et al. Pressure sensor based on porous polydimethylsiloxane with embedded gold nanoparticles. J Mater Sci: Mater Electron 32, 8703–8715 (2021). https://doi.org/10.1007/s10854-021-05541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05541-1

Navigation