Skip to main content
Log in

An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d33) of 57.8 pCN−1 was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Laurencin CT. Clinical perspectives on the use of bone graft based on allografts. In: Laurencin CT editor. Bone graft substitutes. West Conshohocken, PA: ASTM International; 2003. p. 68–95.

    Google Scholar 

  2. Habibovic P, De Groot K. Osteoinductive biomaterials––properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32. doi:10.1002/term.5.

    Article  PubMed  CAS  Google Scholar 

  3. Best SM, Porter AE, Thian ES, Huang J. Bioceramics: past, present and for the future. J Eu Ceram Soc. 2008;28:1319–27. doi:10.1016/j.jeurceramsoc.2007.12.001.

    Article  CAS  Google Scholar 

  4. Sampath T, Reddi H. Bone morphogenetic protein (BMP) implants as bone graft substitutes—promises and challenges. In: CT Laurencin editor. Bone graft substitutes. West Conshohocken, PA: ASTM International and American Academy of Orthopaedic Surgeons; 2003. p. 194–213.

  5. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials. 2004;25:3303–14. doi:10.1016/j.biomaterials.2003.10.006.

    Article  PubMed  CAS  Google Scholar 

  6. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  7. Feng JQ, Yuan HP, Zhang XD. Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials. 1997;18:1531–4. doi:10.1016/S0142-9612(97)00087-2.

    Article  PubMed  CAS  Google Scholar 

  8. Fukada E, Yasuda I. Piezoelectric effects in collagen. Jpn J Appl Phys. 1967;3:117–21. doi:10.1143/JJAP.3.117.

    Article  ADS  Google Scholar 

  9. Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofacial Orthop. 1997;112:8–11.

    Article  PubMed  CAS  Google Scholar 

  10. Itoh S, Nakamura S, Nakamura M, Shinomiyaa K, Yamashita K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials. 2006;27:5572–9. doi:10.1016/j.biomaterials.2006.07.007.

    Article  PubMed  CAS  Google Scholar 

  11. Marino AA, Rosson J, Gonzales E, Jones L, Rogers S, Fukada E. Piezoelectric effect and growth control in bone. Nature 1988; 228.

  12. Park JB, Kelly BJ, Kenner GH, Vonrecum AF, Grether MF, Coffeen WW. J Biomed Mater Res. 1981;15:103. doi:10.1002/jbm.820150114.

    Article  PubMed  CAS  Google Scholar 

  13. Gimenes R, Zaghete MA, Bertolini M, Varela JA, Coelho LO, Silva NF. Smart struct. and mat. 2004: electroactive polymer actuators and devices (EAPAD). In: Bar-Cohen Y editor. SPIE; 2004. p. 539.

  14. Bowen CR, Gittings J, Turner IG, Baxter F, Chaudhuri JB. Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites. Appl Phys Lett. 2006;89:132906. doi:10.1063/1.2355458.

    Article  ADS  Google Scholar 

  15. ANSI/IEEE-Std176. IEEE standard on piezoelectricity. In: IEEE editor. USA; 1987.

  16. Anselme K, Linez P, Bigerelle M, Maguer DL, Maguer AL, Hardouin P, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000;21:1567–77. doi:10.1016/S0142-9612(00)00042-9.

    Article  PubMed  CAS  Google Scholar 

  17. Powder Diffraction File, PDF-2, Database Sets 1–45. International Centre for Diffraction Data; Accessed 2007.

  18. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J Mater Process Technol. 2002;123:133–45. doi:10.1016/S0924-0136(02)00060-2.

    Article  Google Scholar 

  19. McQuillan DJ, Richardson MD, Bateman JF. Matrix deposition by a calcifying human osteogenic sarcoma cell line (SAOS-2). Bone. 1995;16:415–26.

    PubMed  CAS  Google Scholar 

  20. Jaffe B, Cooke WR, Jaffe H. Piezoelectric ceramics. London: Academic Press; 1971.

    Google Scholar 

  21. Li CY, Gao SY, Terashita T, Shimokawa T, Kawahara H, Matsuda S, et al. In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces. Cell Tissue Res. 2006;324:369–75. doi:10.1007/s00441-005-0153-5.

    Article  PubMed  CAS  Google Scholar 

  22. Gittings JP, Bowen CR, Turner IG, Baxter F, Chaudhuri J. Characterisation of ferroelectric-calcium phosphate composites and ceramics. J Eur Ceram Soc. 2007;27:4187–90. doi:10.1016/j.jeurceramsoc.2007.02.120.

    Article  CAS  Google Scholar 

  23. provide article title. Yu L, Yu S-W, Feng X-Q. Mater Sci Eng A. 2007;459:273. doi:10.1016/j.msea.2007.01.063.

    Article  Google Scholar 

  24. Hauke T, Steinhausen R, Seifert W, Beige H, Kamlah M. Modeling of poling behavior of ferroelectric 1–3 composites. J Appl Phys. 2001;89:5040–7. doi:10.1063/1.1359164.

    Article  ADS  CAS  Google Scholar 

  25. Rea SM, Best SM, Bonfield W. Bioactivity of ceramic-polymer composites with varied composition and surface topography. J Mater Sci Mater Med. 2004;15:997–1005. doi:10.1023/B:JMSM.0000042685.63383.86.

    Article  PubMed  CAS  Google Scholar 

  26. Degasne I, Basle MF, Demais V, Hure G, Lesourd M, Grolleau B, et al. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507. doi:10.1007/s002239900640.

    Article  PubMed  CAS  Google Scholar 

  27. Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: where motility begins. Trends Cell Biol. 2002;12:112–20. doi:10.1016/S0962-8924(01)02237-1.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Engineering and Physical Research Council (EPSRC, UK) for their funding of this project (EP/DO13798/1) and the Centre for Electron Optical Studies at the University of Bath for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene G. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, F.R., Turner, I.G., Bowen, C.R. et al. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J Mater Sci: Mater Med 20, 1697–1708 (2009). https://doi.org/10.1007/s10856-009-3734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3734-0

Keywords

Navigation