Skip to main content
Log in

Effects of sterilisation by high-energy radiation on biomedical poly-(ε-caprolactone)/hydroxyapatite composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effects of a high energy sterilization treatment on poly-ε-caprolactone/carbonated hydroxyapatite composites have been investigated. Poly-ε-caprolactone is a biodegradable polymer used as long-term bioresorbable scaffold for bone tissue engineering and carbonated hydroxyapatite is a bioactive material able to promote bone growth. The composites were gamma-irradiated in air or under nitrogen atmosphere with doses ranging from 10 to 50 kGy (i.e. to a value higher than that recommended for sterilization). The effects of the irradiation treatment were evaluated by vibrational spectroscopy (IR and Raman spectroscopies) coupled to thermal analysis (Differential Scanning Calorimetry and Thermogravimetry) and Electron Paramagnetic Resonance spectroscopy. Irradiation with the doses required for sterilization induced acceptable structural changes and damaging effects: only a very slight fragmentation of the polymeric chains and some defects in the inorganic component were observed. Moreover, the radiation sensitivity of the composites proved almost the same under the two different atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249:127–38.

    Article  CAS  PubMed  Google Scholar 

  2. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141–50.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–8.

    Article  CAS  PubMed  Google Scholar 

  4. Corden TJ, Jones IA, Rudd CD, Christian P, Downes S, McDougall KE. Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomaterials. 2000;21:713–24.

    Article  CAS  PubMed  Google Scholar 

  5. Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials. 2004;25:3939–49.

    Article  CAS  PubMed  Google Scholar 

  6. Gogolewski S, Mainil-Varlet P, Dillon JG. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. J Biomed Mater Res. 1996;32:227–35.

    Article  CAS  PubMed  Google Scholar 

  7. Singh A, Silverman J, editors. Radiation processing of polymers. Munich: Hanser Publisher; 1991.

  8. Hilmy N, Febrida A, Basril A. Experiences using IAEA Code of practice for radiation sterilization of tissue allografts: validation and routine control. Radiat Phys Chem. 2007;76:1751–5.

    Article  CAS  ADS  Google Scholar 

  9. Nguyen H, Morgan DAF, Forwood MR. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank. 2007;8:81–91.

    Article  PubMed  Google Scholar 

  10. Zimek Z, Kaluska I. Sterilization dose auditing for various types of medical products. Radiat Phys Chem. 2002;63:673–4.

    Article  CAS  ADS  Google Scholar 

  11. Chen BQ, Sun K. Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005;24:64–70.

    Article  CAS  Google Scholar 

  12. Gorna K, Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab. 2003;79:465–74.

    Article  CAS  Google Scholar 

  13. Masson V, Maurin F, Fessi H, Devissaguet JP. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials. 1997;18:327–35.

    Article  CAS  PubMed  Google Scholar 

  14. Rouxhet L, Legras R. Modifications induced by swift heavy ions in poly(hydroxybutyrate–hydroxyvalerate) (PHB/HV) and poly(ε-caprolactone) (PCL) films: part 1. Thermal behaviour and molecular mass modifications. Nucl Instrum Methods Phys Res B. 2000;171:487–98.

    Article  CAS  ADS  Google Scholar 

  15. Zhu G, Xu Q, Qin R, Yan H, Liang G. Effect of γ-radiation on crystallization of polycaprolactone. Radiat Phys Chem. 2005;74:42–50.

    Article  CAS  ADS  Google Scholar 

  16. Reggiani M, Taddei P, Tinti A, Fagnano C. Spectroscopic study on the enzymatic degradation of a biodegradable composite periodontal membrane. Biopolymers. 2004;74:146–50.

    Article  CAS  PubMed  Google Scholar 

  17. Narkis M, Sibony-Chaouat MS, Siegmann A, Shkolnok S, Bell JP. Irradiation effects on polycaprolactone. Polymer. 1985;26:50–4.

    Article  CAS  Google Scholar 

  18. Ohrlander M, Erickson R, Palmgren R, Wirsen A, Albertsson AC. The effect of electron beam irradiation on PCL and PDXO-X monitored by luminescence and electron spin resonance measurements. Polymer. 2000;41:1277–86.

    Article  CAS  Google Scholar 

  19. Andrew William Inc. The effect of sterilisation methods on plastics and elastomers. Morris: Plastic Design library; 1994.

    Google Scholar 

  20. Hooper KA, Cox JD, Kohn J. Comparison of the effect of ethylene oxide and γ-irradiation on selected tyrosine-derived polycarbonates and poly(l-lactic acid). J Appl Polym Sci. 1997;63:1499–510.

    Article  CAS  Google Scholar 

  21. Kowalski JB, Herring C, Baryschpolec L, Reger J, Patel J, Feeney M, et al. Field evaluations of the VDmax approach for substantiation of a 25 kGy sterilization dose and its application to other preselected doses. Radiat Phys Chem. 2002;64:411–6.

    Article  CAS  ADS  Google Scholar 

  22. Taddei P, Tinti A, Reggiani M, Fagnano C. In vitro mineralization of bioresorbable poly(ε-caprolactone)/apatite composites for bone tissue engineering: a vibrational and thermal investigation. J Mol Struct. 2005;744–747:135–43.

    Article  Google Scholar 

  23. Taddei P, Di Foggia M, Causa F, Ambrosio L, Fagnano C. In vitro bioactivity of poly(ε-caprolactone)-apatite (PCL-AP) scaffolds for bone tissue engineering: the influence of the PCL/AP ratio. Int J Artif Organs. 2006;29:719–25.

    CAS  PubMed  Google Scholar 

  24. Guarino V, Causa F, Taddei P, Di Foggia M, Ciapetti G, Martini D, et al. Polylactic acid fibre reinforced polycaprolactone scaffolds for bone tissue engineering: morphology, degradation properties and human bone cell interaction. Biomaterials. 2008;29:3662–70.

    Article  CAS  PubMed  Google Scholar 

  25. Affatato S, Zavalloni M, Taddei P, Di Foggia M, Fagnano C, Viceconti M. Comparative study on the wear behaviour of different conventional and cross-linked polyethylenes for total hip replacement. Trib Int. 2008;41:813–22.

    Article  CAS  Google Scholar 

  26. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, et al. Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study. Biomaterials. 2003;24:3815–24.

    Article  CAS  PubMed  Google Scholar 

  27. Crescenzi V, Manzini G, Calzolari G, Borri C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J. 1972;8:449–63.

    Article  CAS  Google Scholar 

  28. Baji A, Wong SC, Liu T, Li T, Srivatsan TS. Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. J Biomed Mater Res B. 2007;81B:343–50.

    Article  CAS  Google Scholar 

  29. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3− vibration. Biochim Biophys Acta. 2001;1527:11–9.

    CAS  PubMed  Google Scholar 

  30. Hubner W, Blume A, Pushjakova R, Dekhtyar Y, Hein HJ. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation. Int J Artif Organs. 2005;28:66–73.

    CAS  PubMed  Google Scholar 

  31. Kister G, Cassanas G, Bergounhon M, Hoarau D, Vert M. Structural characterization and hydrolytic degradation of solid copolymers of d,l-lactide-co-ε-caprolactone by Raman spectroscopy. Polymer. 2000;41:925–32.

    Article  CAS  Google Scholar 

  32. Kirchner MT, Edwards HGM, Lucy D, Pollard AM. Ancient and modern specimens of human teeth: a Fourier Transform Raman spectroscopic study. J Raman Spectrosc. 1997;28:171–8.

    Article  CAS  ADS  Google Scholar 

  33. Kubisz L, Polomska M. FT NIR Raman studies on γ-irradiated bone. Spectrochim Acta A. 2007;66:616–25.

    Article  Google Scholar 

  34. Awonusi A, Morris MD, Tecklenburg MMJ. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int. 2007;81:46–52.

    Article  CAS  PubMed  Google Scholar 

  35. Jie W, Li Y. Tissue engineering scaffold material of nano apatite crystals and polyamide composite. Eur Polym J. 2004;40:509–15.

    Article  Google Scholar 

  36. Gupta MC, Deshmukh VG. Radiation effects on poly(lactic acid). Polymer. 1983;24:827–30.

    Article  CAS  Google Scholar 

  37. Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt. 2000;5:259–68.

    Article  CAS  PubMed  Google Scholar 

  38. Schramm DU, Rossi AM. Electron spin resonance (ESR) studies of CO2 radicals in irradiated A and B-type carbonate-containing apatites. Appl Rad Isot. 2000;52:1085–91.

    Article  CAS  Google Scholar 

  39. Da Costa ZM, Pontuschka WM, Campos LL. Study of the ESR signal of gamma irradiated hydroxyapatite for dose assessment. Nucl Instrum Methods Phys Res B. 2004;218:283–8.

    Article  CAS  ADS  Google Scholar 

  40. Bacquet G, Truong VQ, Vignoles M, Trombe JC, Bonel G. ESR of CO. Calcif Tissue Int. 1981;33:105–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mitomo H, Sasada K, Nishimura K, Yoshii F, Nagasawa N. Radiation effects on blends of poly(ε-caprolactone) and diatomites. J Polym Environ. 2004;12:95–103.

    Article  CAS  Google Scholar 

  42. Filipczak K, Janik I, Kozicki M, Ulanski P, Rosiak JM, Pajewski LA, et al. Porous polymeric scaffolds for bone regeneration. e-Polymers. 2005;11:1–13.

    Google Scholar 

  43. Plikk P, Odelius K, Hakkarainen M, Albertsson AC. Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization. Biomaterials. 2006;27:5335–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Angelo Alberti and Dr. Giorgio Fuochi (ISOF-CNR) for the critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele Di Foggia or Armida Torreggiani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Foggia, M., Corda, U., Plescia, E. et al. Effects of sterilisation by high-energy radiation on biomedical poly-(ε-caprolactone)/hydroxyapatite composites. J Mater Sci: Mater Med 21, 1789–1797 (2010). https://doi.org/10.1007/s10856-010-4046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4046-0

Keywords

Navigation