Skip to main content
Log in

Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aims to prepare a novel porous titanium (Ti) scaffold in order to improve the biocompatibility of the metallic implants. Porous Ti was produced by a Liquid foaming method and subsequent chemical treatments. It was found that the scaffold had three-dimensionally hierarchical porous structures with pore size ranging from nanometer to micrometer scale, and it also had activated surface. Mechanical test results showed that the scaffold also has sufficient compressive strength to meet the requirements of implantation. Protein adsorption results indicated that the novel scaffolds significantly enhanced the protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in medicine. Berlin: Springer; 2001.

    Google Scholar 

  2. Van Noort R. Titanium: the implant material of today. J Mater Sci. 1987;22:3801–11.

    Article  Google Scholar 

  3. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng. 1996;213 A:134–7.

    Google Scholar 

  4. Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop. 1995;311:85–90.

    Google Scholar 

  5. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005;26:6014–23.

    Article  CAS  Google Scholar 

  6. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.

    Article  CAS  Google Scholar 

  7. Svehla M, Morberg P, Zicat B. Morphometric and mechanical evaluation of titanium implant integration: Comparison of five surface structures. J Biomed Mater Res. 2000;51:15–6.

    Article  CAS  Google Scholar 

  8. Liu LS, Thompson AY, Heidaran HA. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials. 1999;20:1097–108.

    Article  CAS  Google Scholar 

  9. Ayers RA, Simske SJ, Bateman TA, Petkus A, Sachdeva RL, Gyunter VE. Effect of nitinol implants porosity on cranial bone ingrowth and apposition after 6 weeks. J Biomed Mater Res. 1999;45:42–7.

    Article  CAS  Google Scholar 

  10. Kujala S, Ryhanen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials. 2003;24:4691–7.

    Article  CAS  Google Scholar 

  11. Fisher JP, Vehof JW, Dean D, Waerden JP, Holland TA, Mikos AG. Soft and hard tissue response to photocrosslinked poly (propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res. 2002;59:547–56.

    Article  CAS  Google Scholar 

  12. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317–24.

    CAS  Google Scholar 

  13. Gotz HE, Muller M, Emmel A, Holzwarth U, Erben RG, Stangl R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials. 2004;25:4057–64.

    Article  CAS  Google Scholar 

  14. Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-inducedosteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83:105–15.

    Google Scholar 

  15. Schwarz K, Epple M. Hierarchically structured polyglycolide-a biomaterial mimicking natural bone. Macromol Rapid Commun. 1998;19:613–7.

    CAS  Google Scholar 

  16. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res. 2004;69A:601–10.

    Article  CAS  Google Scholar 

  17. Vassilis K, David K. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  18. Kokubo T, Miyaji F, Kim HM, Nakamura TJ. Spontaneous formation of bone like apatite layer on chemically treated titanium metals. J Am Ceram Soc. 1996;79:1127–9.

    Article  CAS  Google Scholar 

  19. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11:383–9.

    Article  CAS  Google Scholar 

  20. Elbert SE, Hubbell JA. Functional biomaterials: design of novel biomaterials. Annu Rev Mater Res. 2001;31:183–201.

    Article  Google Scholar 

  21. Wen CE, Mabuchi M, Yamada Y. Processing of biocompatible porous Ti and Mg. Scr Mater. 2001;45:1147–53.

    Article  CAS  Google Scholar 

  22. Lin AS, Barrows TH, Cartmell SH, Guldberg RE. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials. 2003;24:481–9.

    Article  CAS  Google Scholar 

  23. Ontanon M, Aparicio C, Ginebra MP, Planell JA. Biological materials. Oxford: Pergamon Press; 2000.

    Google Scholar 

  24. Wang XJ, Song GJ, Lou T. Fabrication and characterization of nano composite scaffold of poly (l-lactic acid)/hydroxyapatite. J Mater Sci Mater Med. 2009;21(1):183–8.

    Article  Google Scholar 

  25. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–83.

    Article  CAS  Google Scholar 

  26. Woo KM, Seo J, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28:2622–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chinese FANEDD (200554) and the National Key Project of Scientific and Technical Supporting Programs Funded by the Chinese MSTC (2006BAI16B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Feng, B., Zhu, Y. et al. Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures. J Mater Sci: Mater Med 22, 839–844 (2011). https://doi.org/10.1007/s10856-011-4280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4280-0

Keywords

Navigation