Skip to main content

Advertisement

Log in

Temperature-sensitive star-shaped block copolymers hydrogels for an injection application: phase transition behavior and biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A series of star-shaped poly(d,l-lactic-co-glycolic acid)-b–methoxy poly(ethylene glycol) (PLGA–mPEG) block copolymers with varying PLGA/mPEG block weight ratios, mPEG block length, and arm numbers were synthesized and phase transition behaviors were investigated. Phase transition characteristics, such as critical gel concentration (CGC) and critical gel temperature (CGT), were closely related to the molecular structure of the star-shaped block copolymers. The CGC was mainly determined by the balance of hydrophobic PLGA and hydrophilic mPEG block (PLGA/mPEG block ratio). The CGTs showed a stronger dependence on mPEG block length and arm number. Also, the CGTs can be adjusted by adding mPEG homopolymer additives. The weight fraction of mPEG had a stronger influence on the CGT values than molecular weight of mPEG. In addition, the MTT assay and histological observations confirmed the acceptable biocompatibility of the star-shaped block copolymer. Hence, the star-shaped PLGA-mPEG block copolymer was a promising candidate as a novel injectable gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860–2.

    Article  CAS  Google Scholar 

  2. Booth C, Attwood D. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun. 2000;21:501–27.

    Article  CAS  Google Scholar 

  3. Bhardwaj R, Blanchard J. Controlled-release delivery system for the r-MSH analog melanotan-I using poloxamer 407. J Pharm Sci. 1996;85:915–9.

    Article  CAS  Google Scholar 

  4. Wenzel JG, Balaji KS, Koushik K, Navarre C, Duran SH, Rahe CH, et al. Pluronic F127 gel formulations of Deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J Control Release. 2002;85:51–9.

    Article  CAS  Google Scholar 

  5. Hinrichs WLJ, Schuurmans-Nieuwenbroek NME, van de Wetering P, Hennink WE. Thermosensitive polymers as carriers for DNA delivery. J Control Release. 1999;60:249–59.

    Article  CAS  Google Scholar 

  6. Li Z, Ning W, Wang J, Choi A, Lee PY, Tyagi P, et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res. 2003;20:884–8.

    Article  CAS  Google Scholar 

  7. Jeong B, Wang LQ, Gutowska A. Biodegradable thermoreversible gelling PLGAg–PEG copolymers. Chem Commun. 2001;16:1516–7.

    Article  CAS  Google Scholar 

  8. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release. 2001;72:203–15.

    Article  CAS  Google Scholar 

  9. Ahn JS, Suh JM, Lee M, Jeong B. Slow eroding biodegradable multiblock poloxamer copolymers. Polym Int. 2005;54:842–7.

    Article  CAS  Google Scholar 

  10. Kim JI, Lee SH, Kang HJ, Kwon DY, Kim DY, Kang WS, Kim JH, Kim MS. Examination of phase transition behavior of ion group functionalized MPEG-b-PCL diblock copolymers. Soft Matter. 2011;7:8650–6.

    Article  CAS  Google Scholar 

  11. Hu Z, Cai T, Chi C. Thermoresponsive oligo(ethylene glycol)-methacrylate-based polymers and microgels. Soft Matter. 2010;6:2115–23.

    Article  CAS  Google Scholar 

  12. Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32:7064–9.

    Article  CAS  Google Scholar 

  13. Jeong B, Kibbey MR, Birnbaum JC, Won YY, Gutowska A. Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules. 2000;33:8317–22.

    Article  CAS  Google Scholar 

  14. Lapienis G. Star-shaped polymer having PEO arms. Prog Polym Sci. 2009;34:852–92.

    Article  CAS  Google Scholar 

  15. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. Structure characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules. 2009;42:1344–51.

    Article  CAS  Google Scholar 

  16. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84.

    Article  CAS  Google Scholar 

  17. Nagahama K, Fujiura K, Enami S, Ouchi T, Ohya Y. Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA. J Polym Sci Part A. 2008;46:6317–32.

    Article  CAS  Google Scholar 

  18. Zou P, Suo J, Nie L, Feng S. Temperature-responsive biodegradable star-shaped block copolymers for vaginal gels. J Mater Chem. 2012;22:6316–26.

    Article  CAS  Google Scholar 

  19. Lee SJ, Han BR, Park SY, Han DK, Kim SC. Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution. J Polym Sci Part A. 2006;44:888–99.

    Article  CAS  Google Scholar 

  20. Zou P, Suo J, Nie L, Feng S. Temperature-sensitive biodegradable mixed star-shaped block copolymers hydrogels for an injection application. Polymer. 2012;53:1245–57.

    Article  CAS  Google Scholar 

  21. Jeong BM, Lee DS, Shon J, Bae YH, Kim SW. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci Part A. 1999;37:751–60.

    Article  CAS  Google Scholar 

  22. Choi SW, Choi SY, Jeong BM, Kim SW, Lee DS. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers II. J Polym Sci Part A. 1999;37:2207–18.

    Article  CAS  Google Scholar 

  23. Bea SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B. Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules. 2005;38:5260–5.

    Article  CAS  Google Scholar 

  24. Singh S, Singh J. Phase-sensitive polymer-based controlled delivery systems of leuprolide acetate: in vitro release, biocompatibility, and in vivo absorption in rabbits. Int J Pharm. 2007;328:42–8.

    Article  CAS  Google Scholar 

  25. Chen S, Singh J. Controlled release of growth hormone fromthermosensitive triblock copolymer systems: in vitro and in vivo evaluation. Int J Pharm. 2008;352:58–65.

    Article  CAS  Google Scholar 

  26. Wang YC, Tang LY, Li Y, Wang J. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced Self-assembly, biocompatibility, and hydrolytic degradation. Biomacromolecules. 2009;10:66–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Fundamental Research Funds for the Central Universities, HUST: 2010JC029. Thanks to the analytical and testing center of HUST for useful characterizations. The assistance in the measurement of GPC by Lihua Zhao, technician of the chemistry department of HUST, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Suo.

Additional information

Lei Nie and Peng Zou contributed equally to this study and should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, L., Zou, P., Feng, S. et al. Temperature-sensitive star-shaped block copolymers hydrogels for an injection application: phase transition behavior and biocompatibility. J Mater Sci: Mater Med 24, 689–700 (2013). https://doi.org/10.1007/s10856-012-4819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4819-8

Keywords

Navigation