Skip to main content

Advertisement

Log in

Biocompatible bacterial cellulose membrane in dural defect repair of rat

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Duraplasty is necessary in nearly 30% of all neurological surgeries. Different tissues and materials have been evaluated in dura mater repair or as dural substitutes in neurosurgery. The aim was to evaluate the biocompatibility of the bacterial cellulose (BC) membranes, produced from sugarcane molasses, for dural defect repair in rats. Forty adults males Wistar rats divided into two groups: a control (ePTFE) and an experimental (BC). Bilateral frontoparietal craniectomy was performed, and a dural defect was created. The arachnoid underlying defect was disrupted with a narrow hook. The animals were observed for 120 days. There were no cases of infection, cerebrospinal fluid fistulae, delayed hemorrhages, behavior disturbances, seizures and palsies. The BC membrane showed to have suitable biocompatibility properties, was not induced immune reaction, nor chronic inflammatory response and absence of neurotoxicity signals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Becker SS, Jackler RK, Pitts LH. Cerebrospinal fluid leak after acoustic neuroma surgery: a comparison of the translabyrinthine, middle fossa, and retrosigmoid approaches. Otol Neurotol. 2003;24:107–12.

    Article  Google Scholar 

  2. Kuhn J, Hofmann B, Knitelius H, Coenen H, Bewermeyer H. Bilateral subdural haematoma and lumbar pseudomeningocele due to a chronic leakage of liquor cerebrospinalis after a lumbar discectomy with the application of ADCON-L gel. J Neurol Neurosurg Psychiatry. 2005;76:1031–33.

    Article  Google Scholar 

  3. Sabatino G, Della Pepa GM, Bianchi F, Capone G, Rigante L, Albanese A, Maira G, Marchese E. Autologous dural substitutes: a prospective study. Clin Neurol Neurosurg. 2014;116:20–23.

    Article  Google Scholar 

  4. Ostendorf AP, Connolly AM. Medical management of eosinophilic meningitis following bovine graft duraplasty for Chiari malformation type I repair. J Neurosurg Pediatr. 2013;12:357–9.

    Article  Google Scholar 

  5. Sandoval-Sanchez JH, Ramos-Zuniga R, de Anda SL, Lopez-Dellamary F, Gonzalez-Castaneda R, Ramírez-Jaimes de L, Jorge-Espinoza G. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World Neurosurg. 2012;77:577–82.

    Article  Google Scholar 

  6. Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries-a retrospective case series. Neurosurgery. 2012;71(2 Suppl Operative):ons302–7. doi:10.1227/NEU.0b013e31826a8ab0.

    Google Scholar 

  7. Gazzeri R, Galarza M, Alfieri A, Neroni M, Roperto R. Simple intraoperative technique for minor dural gap repair using fibrin glue and oxidized cellulose. World Neurosurg. 2011;76:173–5.

    Article  Google Scholar 

  8. Messing-Jünger AM, Ibanez J, Calbucci F, Choux M, Lena G, Mohsenipour I, Van Calenbergh F. Effectiveness and handling characteristics of a three-layer polymer dura substitute: a prospective multicenter clinical study. J Neurosurg. 2006;105:853–8.

    Article  Google Scholar 

  9. Yamada K, Miyamoto S, Nagata I, Kikuchi H, Ikada Y, Iwata H, Yamamoto K. Development of a dural substitute from synthetic bioabsorbable polymers. J Neurosurg. 1997;86:1012–7.

    Article  Google Scholar 

  10. Malliti M, Page P, Gury C, Chomette E, Nataf F, Roux FX. Comparison of deep wound infection rates using a synthetic dural substitute (Neuropatch) or pericranium graft for dural closure: a clinical review of 1 year. Neurosurgery. 2004;54:599–604.

    Article  Google Scholar 

  11. Knopp U, Christmann F, Reusche E, Sepehrnia A. A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects - a comparative animal experimental study. Acta Neurochir (Wien). 2005;147:877–87.

    Article  Google Scholar 

  12. Clausen F, Lindh T, Salimi S, Erlandsson A. Combination of growth factor treatment and scaffold deposition following experimental traumatic brain injury show a temporary effect on cellular regeneration. Brain Res. 2014;1588:37–46.

    Article  Google Scholar 

  13. Khan F, Ahmad SR. Polysaccharides and Their derivatives for versatile tissue engineering application. Macromol Biosci. 2013;13:395–421.

    Article  Google Scholar 

  14. Mello LR, Feltrin LT, Fontes Neto PT, Ferraz FA. Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg. 1997;86:143–50.

    Article  Google Scholar 

  15. Mello LR, Alcantara BB, Bernardes CI, Boer VH. Late favorable results of duraplasty with biocellulose: clinical retrospective study of 20 cases. Arq Bras Neurocir. 2012;31:128–34. http://files.bvs.br/upload/S/0103-5355/2012/v31n3/a3396.pdf.

    Google Scholar 

  16. Rosen CL, Steinberg GK, Demonte F, Delashaw JB, Lewis SB, Shaffrey ME, Aziz K, Hantel J, Marciano FF. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery. 2011;69:1093–103.

    Google Scholar 

  17. Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. Int J Mol Sci. 2014;15:10855–67.

    Article  Google Scholar 

  18. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci. 2011;9(3):527–34. doi:10.5114/aoms.2013.33433. 20.

    Google Scholar 

  19. Pértile RAN, Moreira S, Andrade FK, Domingues L, Gama M. Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog. 2012;28:526–32.

    Article  Google Scholar 

  20. Paterson-Beedle M, Kennedy JF, Melo FAD, Lloyd LL, Medeiros V. Cellulosic exopolysaccharide produced from sugarcane molasses by a Zoogloea sp. Carbohydr Polym. 2000;42:375–83.

    Article  Google Scholar 

  21. Cavalcante AHM, Carvalho LB, Carneiro-da-Cunha MG. Cellulosic exopolysaccharide produced by Zoogloea sp. as a film support for trypsin immobilization. Biochem Eng J. 2006;29:258–61.

    Article  Google Scholar 

  22. Carvalho Junior AM, Santos MM, Barkokébas BB, de Andrade Aguiar JL, Lima SVC, Dambros M. Characterization of the deposition of collagen fibers and lithogenic potential in bladder of rats submitted to a sugar cane biopolymer graft. Int Braz J Urol. 2012;38:544–51.

    Article  Google Scholar 

  23. Albuquerque PCVC, Aguiar JLA, Santos SM, Pontes Filho N, Mello RJV, Costa MLCR. Comparative study of the areas of osteochondral defects produced in the femoral condyles of rabbits treated with gel of sugarcane biopolymer. Acta Cir Bras. 2011;26:383–6.

    Article  Google Scholar 

  24. Medeiros Junior MD, Carvalho EJDA, Catunda IS, Bernardino-Araujo S, Aguiar JLA. Hydrogel of polysaccharide of sugarcane molasses as carrier of bone morphogenetic protein in the reconstruction of critical bone defects in rats. Acta Cir Bras. 2013;28:233–8.

    Article  Google Scholar 

  25. Aguiar JLA, Lins EM, Barros Marques SR, Barros Coelho AR, Rossiter RO, Melo RJV. Surgarcane biopolymer patch in femoral artery angioplasty on dogs. Acta Cir Bras. 2007;22:77–81.

    Article  Google Scholar 

  26. De Barros-Marques SR, Marques-Lins E, De Albuquerque MCS, Aguiar JLA. Sugarcane biopolymer patch in femoral vein angioplasty on dogs. J Vasc Surg. 2012;55:517–21.

    Article  Google Scholar 

  27. Falcão SC, Coelho ARDB, Evêncio Neto J. Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cir Bras. 2008;23:184–91.

    Article  Google Scholar 

  28. Silveira RK, Coelho AR, Pinto FC, de Albuquerque AV, de Melo Filho DA, de Andrade Aguiar JL. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model. J Mater Sci Mater Med. 2016;27(8):129. doi:10.1007/s10856-016-5744-z.

  29. Fragoso AS, Silva MB, De Melo CP, Aguiar JLA, Rodrigues CG. Dielectric study of the adhesion of mesenchymal stem cells from human umbilical cord on a sugarcane biopolymer. J Mater Sci Mater Med. 2014;25:229–37.

    Article  Google Scholar 

  30. Castro CMMB, Aguiar JLA, Melo FAD, Silva WTF, Marques E, Silva DB. Sugarcane biopolymer cytotoxicity. An Fac Med Univ Fed Pernamb. 2004;49:119–23. http://www.anaisdemedicina.revistaonline.org/_Secao/3289/_Pagina/Revista/ArtigoVisualizar.aspx?artigoId=85&ass=64816093.

    Google Scholar 

  31. Pinto FCM, De-Oliveira ACAX, De-Carvalho RR, Gomes-Carneiro MR, Coelho DR, Lima SVC, Paumgartten FJR, Aguiar JLA. Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydr Polym. 2016;137:556–60.

    Article  Google Scholar 

  32. Lucena MT, Melo Júnior MR, Lira MMM, Castro CM, Cavalcanti LA, Menezes MA, Pinto FCM, Aguiar JLA. Biocompatibility and cutaneous reactivity of cellulosic polysaccharide film in induced skin wounds in rats. J Mater Sci Mater Med. 2015;26:5410

    Article  Google Scholar 

  33. Gortler M, Braun M, Becker I, Roggendorf W, Heiss E, Grote E. Animal experiments with a new dura graft (polytetraflurethylene). Results. Neurochirurgia (Stuttg). 1991;34:103–6.

    Google Scholar 

  34. Yamagata S, Goto K, Oda Y, Kikuchi H. Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater. Neurol Med Chir (Tokyo). 1993;33:582–5.

    Article  Google Scholar 

  35. Matsumoto Y, Aikawa H, Tsutsumi M, Narita S, Yoshida H, Etou H. Histological examination of expanded polytetrafluoroethylene artificial dura mater at 14 years after craniotomy. Neurol Med Chir (Tokyo). 2013;53:43–6.

    Article  Google Scholar 

  36. Viñas FC, Ferris D, Kupsky WJ, Dujovny M. Evaluation of expanded polytetrafluoroethylene (ePTFE) versus polydioxanone (PDS) for the repair of dura mater defects. Neurol Res. 1999;21:262–8.

    Article  Google Scholar 

  37. Walcott BP, Neal JB, Sheth SA, Kahle KT, Eskandar EN, Coumans JV. The incidence of complications in elective cranial neurosurgery associated with dural closure material. J Neurosurg. 2014;120:278–84.

    Article  Google Scholar 

  38. Vakis A, Koutentakis D, Karabetsos D, Kalostos G. Use of polytetrafluoroethylene dural substitute as adhesion preventive material during craniectomies. Clin Neurol Neurosurg. 2006;108:798–802.

    Article  Google Scholar 

  39. Nazzaro JM, Craven DE. Successful treatment of postoperative meningitis due to Haemophilus influenzae without removal of an expanded polytetrafluoroethylene dural graft. Clin Infect Dis. 1998;26:516–8.

    Article  Google Scholar 

  40. Nakagawa S, Hayashi T, Anegawa S, Nakashima S, Shimokawa S, Furukawa Y. Postoperative infection after duraplasty with expanded polytetrafluoroethylene sheet. Neurol Med Chir (Tokyo). 2003;43:120–4.

    Article  Google Scholar 

  41. Sandoval-Sánchez JH, Ramos-Zúñiga R, Luquín De Anda S, López-Dellamary F, Gonzalez-Castañeda R, Ramírez-Jaimes JDLC. A new bilayer chitosan scaffolding as a dural substitute: Experimental evaluation. World Neurosurg. 2012;77:577–82.

    Article  Google Scholar 

Download references

Acknowledgements

Research Performed at Center for Experimental Surgery of the Federal University of Pernambuco UFPE, Recife-PE, Brazil. Research Performed at collaboration with the Laboratory of Human Reproduction of the University of São Paulo (UNIFESP), Laboratory of Immunopathology Keizo Asami (LIKA), and the Department of Nuclear Energy (DEN) of the Federal University of Pernambuco, Recife/PE, Brazil. The English version of this text has been revised by a native speaker, Sidney Pratt, Canadian, BA, MAT (The Johns Hopkins University), RSA diploma (TEFL) University of Cambridge.

Funding

National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Cristina Morone Pinto.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.d.M.T., Pinto, F.C.M., Andrade-da-Costa, B.L.d.S. et al. Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci: Mater Med 28, 37 (2017). https://doi.org/10.1007/s10856-016-5828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5828-9

Keywords

Navigation