Skip to main content

Advertisement

Log in

20(S)-hydroxycholesterol and simvastatin synergistically enhance osteogenic differentiation of marrow stromal cells and bone regeneration by initiation of Raf/MEK/ERK signaling

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the significant roles of simvastatin (SVA) and oxysterols in the osteogenesis process. In this study, we evaluate the effect of a combination of SVA and 20(S)-hydroxycholesterol (20(S)OHC) on the cell viability and osteogenic differentiation of bone marrow stromal cells (BMSCs). After treatment with a control vehicle, SVA (0.025, 0.10, 0.25 or 1.0 μM), 20(S)OHC (5 μM), or a combination of both (0.25 μM SVA + 5 μM 20(S)OHC), the proliferation, apoptosis, ALP activity, mineralization, osteogenesis-related gene expression and Raf/MEK/ERK signaling activity in BMSCs were measured. Our results showed that high concentrations of SVA (0.25 and 1.0 μM) enhanced osteogenesis-related genes expression while attenuating cell viability. The addition of 5 μM 20(S)OHC induced significantly higher proliferative activity, which neutralized the inhibitory effect of SVA on the viability of BMSCs. Moreover, compared to supplementation with only one of the additives, combined supplementation with both SVA and 20(S)OHC induced significantly enhanced ALP activity, calcium sedimentation, osteogenesis-related genes (ALP, OCN and BMP-2) expression and Raf/MEK/ERK signaling activity in BMSCs; these enhancements were attenuated by treatment with the inhibitor U0126, indicating a significant role of Raf/MEK/ERK signaling in mediating the synergistically enhanced osteogenic differentiation of BMSCs by combined SVA and 20(S)OHC treatment. Additionally, histological examination confirmed a synergistic effect of SVA and 20(S)OHC on enhancing bone regeneration in a rabbit calvarial defect model. This newly developed SVA/20(S)OHC formulation may be used as an osteoinductive drug to enhance bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–82.

    Article  CAS  Google Scholar 

  2. Bardsley K, Kwarciak A, Freeman C, et al. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials. 2017;112:313–23.

    Article  CAS  Google Scholar 

  3. Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. Eur Cells Mater. 2014;28:166–207. discussion 207–168

    Article  CAS  Google Scholar 

  4. Simmonds MC, Brown JV, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med. 2013;158:877–89.

    Article  Google Scholar 

  5. Carreira AC, Lojudice FH, Halcsik E, et al. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93:335–45.

    Article  CAS  Google Scholar 

  6. Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev. 2000;42:121–38.

    Article  CAS  Google Scholar 

  7. Mannheim D, Herrmann J, Bonetti PO, et al. Simvastatin preserves diastolic function in experimental hypercholesterolemia independently of its lipid lowering effect. Atherosclerosis. 2011;216:283–91.

    Article  CAS  Google Scholar 

  8. Shah SR, Werlang CA, Kasper FK, et al. Novel applications of statins for bone regeneration. Natl Sci Rev. 2015;2:85–99.

    Article  Google Scholar 

  9. Moshiri A, Sharifi AM, Oryan A. Role of Simvastatin on fracture healing and osteoporosis: a systematic review on in vivo investigations. Clin Exp Pharmacol Physiol. 2016;43:659–84.

    Article  CAS  Google Scholar 

  10. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.

    Article  CAS  Google Scholar 

  11. Allon I, Anavi Y, Allon DM. Topical simvastatin improves the pro-angiogenic and pro-osteogenic properties of bioglass putty in the rat calvaria critical-size model. J Oral Implantol. 2014;40:251–8.

    Article  Google Scholar 

  12. van Nieuw Amerongen GP, Vermeer MA, Negre-Aminou P, et al. Simvastatin improves disturbed endothelial barrier function. Circulation. 2000;102:2803–9.

    Article  Google Scholar 

  13. Zhang Y, Bradley AD, Wang D, et al. Statins, bone metabolism and treatment of bone catabolic diseases. Pharmacol Res. 2014;88:53–61.

    Article  CAS  Google Scholar 

  14. Weivoda MM, Hohl RJ. The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem. 2011;112:1506–13.

    Article  CAS  Google Scholar 

  15. Chen PY, Sun JS, Tsuang YH, et al. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res. 2010;30:191–9.

    Article  CAS  Google Scholar 

  16. Kaji H, Naito J, Inoue Y, et al. Statin suppresses apoptosis in osteoblastic cells: role of transforming growth factor-beta-Smad3 pathway. Horm Metab Res. 2008;40:746–51.

    Article  CAS  Google Scholar 

  17. Kaji H, Kanatani M, Sugimoto T, et al. Statins modulate the levels of osteoprotegerin/receptor activator of NFkappaB ligand mRNA in mouse bone-cell cultures. Horm Metab Res. 2005;37:589–92.

    Article  CAS  Google Scholar 

  18. Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: from cholesterol metabolites to key mediators. Prog Lipid Res. 2016;64:152–69.

    Article  CAS  Google Scholar 

  19. Nevius E, Pinho F, Dhodapkar M, et al. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. J Exp Med. 2015;212:1931–46.

    Article  CAS  Google Scholar 

  20. Johnson JS, Meliton V, Kim WK, et al. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J Cell Biochem. 2011;112:1673–84.

    Article  CAS  Google Scholar 

  21. Woltje M, Bobel M, Heiland M, et al. Purmorphamine and oxysterols accelerate and promote osteogenic differentiation of mesenchymal stem cells in vitro. In Vivo. 2015;29:247–54.

    CAS  Google Scholar 

  22. Aghaloo TL, Amantea CM, Cowan CM, et al. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J Orthop Res. 2007;25:1488–97.

    Article  CAS  Google Scholar 

  23. Kim WK, Meliton V, Amantea CM, et al. 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J Bone Miner Res. 2007;22:1711–9.

    Article  CAS  Google Scholar 

  24. Kim WK, Meliton V, Tetradis S, et al. Osteogenic oxysterol, 20(S)-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. J Bone Miner Res. 2010;25:782–95.

    Article  CAS  Google Scholar 

  25. Amantea CM, Kim WK, Meliton V, et al. Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem. 2008;105:424–36.

    Article  CAS  Google Scholar 

  26. Kha HT, Basseri B, Shouhed D, et al. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res. 2004;19:830–40.

    Article  CAS  Google Scholar 

  27. Richardson JA, Amantea CM, Kianmahd B, et al. Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway. J Cell Biochem. 2007;100:1131–45.

    Article  CAS  Google Scholar 

  28. Montazerolghaem M, Ning Y, Engqvist H, et al. Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells. J Mater Sci Mater Med. 2016;27:23.

    Article  Google Scholar 

  29. Ruiz-Gaspa S, Nogues X, Enjuanes A, et al. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cell Biochem. 2007;101:1430–8.

    Article  CAS  Google Scholar 

  30. Baek KH, Lee WY, Oh KW, et al. The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J Korean Med Sci. 2005;20:438–44.

    Article  CAS  Google Scholar 

  31. Yue X, Niu M, Zhang T, et al. In vivo evaluation of a simvastatin-loaded nanostructured lipid carrier for bone tissue regeneration. Nanotechnology. 2016;27:115708.

    Article  Google Scholar 

  32. Osuga J. [Statin and bone metabolism]. Clin Calcium. 2004;14:235–40.

    CAS  Google Scholar 

  33. During A, Penel G, Hardouin P. Understanding the local actions of lipids in bone physiology. Prog Lipid Res. 2015;59:126–46.

    Article  CAS  Google Scholar 

  34. Montero J, Manzano G, Albaladejo A. The role of topical simvastatin on bone regeneration: a systematic review. J Clini Exp Dent. 2014;6:e286–90.

    Article  Google Scholar 

  35. Stappenbeck F, Xiao W, Epperson M, et al. Novel oxysterols activate the Hedgehog pathway and induce osteogenesis. Bioorg Med Chem Lett. 2012;22:5893–7.

    Article  CAS  Google Scholar 

  36. Yalom A, Hokugo A, Sorice S, et al. In vitro osteoinductive effects of hydroxycholesterol on human adipose-derived stem cells are mediated through the hedgehog signaling pathway. Plast Reconstr Surg. 2014;134:960–8.

    Article  CAS  Google Scholar 

  37. Kwon IK, Lee SC, Hwang YS, et al. Mitochondrial function contributes to oxysterol-induced osteogenic differentiation in mouse embryonic stem cells. Biochim Biophys Acta. 2015;1853:561–72.

    Article  CAS  Google Scholar 

  38. Shouhed D, Kha HT, Richardson JA, et al. Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells. J Cell Biochem. 2005;95:1276–83.

    Article  CAS  Google Scholar 

  39. Fowlkes JL, Thrailkill KM, Liu L, et al. Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res. 2006;21:1359–66.

    Article  CAS  Google Scholar 

  40. Zhang T, Wang C, Yue XX, et al. Characteristics and in vivo osteogenic effect of simvastatin-containing MPEG-PLA nanoparticles on bone regeneration. Nanosci Nanotech Lett. 2016;8:211–9.

    Article  CAS  Google Scholar 

  41. Zhang Y, Zhang R, Li Y, et al. Simvastatin augments the efficacy of therapeutic angiogenesis induced by bone marrow-derived mesenchymal stem cells in a murine model of hindlimb ischemia. Mol Biol Rep. 2012;39:285–93.

    Article  Google Scholar 

  42. Qiao LJ, Kang KL, Heo JS. Simvastatin promotes osteogenic differentiation of mouse embryonic stem cells via canonical Wnt/β-catenin signaling. Mol Cells. 2011;32:437–44.

    Article  CAS  Google Scholar 

  43. Greenblatt MB, Shim JH, Glimcher LH. Mitogen-Activated Protein Kinase Pathways in Osteoblasts. Annu Rev Cell Dev Biol. 2013;29:63–79.

    Article  CAS  Google Scholar 

  44. Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709–18.

    Article  CAS  Google Scholar 

  45. Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233:2937–48.

    Article  CAS  Google Scholar 

  46. Katz S, Boland R, Santillan G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol. 2006;38:2082–91.

    Article  CAS  Google Scholar 

  47. Lai CF, Chaudhary L, Fausto A, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001;276:14443–50.

    Article  CAS  Google Scholar 

  48. Kanno T, Takahashi T, Tsujisawa T, et al. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 2007;101:1266–77.

    Article  CAS  Google Scholar 

  49. Xiao G, Gopalakrishnan R, Jiang D, et al. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17:101–10.

    Article  CAS  Google Scholar 

  50. Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol. 2006;97:52C–60C.

    Article  CAS  Google Scholar 

  51. Wong RW, Rabie AB. Statin collagen grafts used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg. 2003;41:244–8.

    Article  CAS  Google Scholar 

  52. Tai IC, Fu YC, Wang CK, et al. Local delivery of controlled-release simvastatin/PLGA/HAp microspheres enhances bone repair. Int J Nanomed. 2013;8:3895–904.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China under Grant (81170998); and the Science and Technology Plan Projects funds of Taishan City under Grant (201634611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lin, Y., Rong, M. et al. 20(S)-hydroxycholesterol and simvastatin synergistically enhance osteogenic differentiation of marrow stromal cells and bone regeneration by initiation of Raf/MEK/ERK signaling. J Mater Sci: Mater Med 30, 87 (2019). https://doi.org/10.1007/s10856-019-6284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6284-0

Navigation