Skip to main content
Log in

Electrospun gelatin–polyethylenimine blend nanofibrous scaffold for biomedical applications

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, gelatin–polyethylenimine blend nanofibers (GEL/PEI) were fabricated via electrospinning with different ratios (9:1, 6:1, 3:1) to integrate the properties of both the polymers for evaluating its biomedical application. From scanning electron microscopy, the average diameter of blend nanofibers (265 ± 0.074 nm to 340 ± 0.088 nm) was observed to be less than GEL nanofibers (403 ± 0.08 nm). The incorporation of PEI with gelatin resulted in improved thermal stability of nanofibers whereas the Young’s modulus was observed to be higher at 9:1 ratio when compared with other ratios. The in vitro studies showed that the GEL/PEI nanofibers with 9:1 ratio promoted better cell adhesion and viability. GEL/PEI nanofibers with 9:1 and 6:1 showed hemolysis within the permissible limits. From the results, it could be interpreted that GEL/PEI nanofibers with 9:1 ratio proved to be a better scaffold thereby making them a potential candidate for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murphy CM, O’Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater. 2013;26:120–32.

    Article  CAS  Google Scholar 

  2. Walters NJ, Gentleman E. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater. 2015;11:3–16.

    Article  CAS  Google Scholar 

  3. Jin G, Li Y, Prabhakaran MP, Tian W, Ramakrishna S. In vitro and in vivo evaluation of the wound healing capability of electrospun gelatin/PLLCL nanofibers. J Bioact Comp Polym. 2014;29:6628–45.

    Article  Google Scholar 

  4. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly (epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.

    Article  CAS  Google Scholar 

  5. Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KH, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44:790–814.

    Article  CAS  Google Scholar 

  6. Pérez RA, Won JE, Knowles JC, Kim HW. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev. 2013;65:471–96.

    Article  Google Scholar 

  7. Jalaja K, kumar PR A, Dey T, Kundu SC, James NR. Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydr Polym. 2014;114:467–75.

    Article  CAS  Google Scholar 

  8. Huang CH, Chi CY, Chen YS, Chen KY, Chen PL, Yao CH. Evaluation of proanthocyanidin - crosslinked electrospun gelatin nanofibers for drug delivering system. Mater Sci Eng C. 2012;32:2476–83.

    Article  CAS  Google Scholar 

  9. Zhou X, Laroche F, Lamers GE, Torraca V, Voskamp P, Lu T, et al. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012;1:1–7.

    Google Scholar 

  10. Khanam N, Mikoryak C, Draper RK, Balkus KJ. Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater. 2007;3:1050–9.

    Article  CAS  Google Scholar 

  11. Vancha AR, Govindaraju S, Parsa KV, Jasti M, González-García M, Ballestero RP. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotech. 2004;4:23–34.

    Article  Google Scholar 

  12. Kafil V, Omidi Y. Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431. Cells Bioimpacts. 2011;1:23–30.

    CAS  Google Scholar 

  13. Krishnaswamy VK, Lakra R, Korrapati PS. Keloid collagen–cell interactions: structural and functional perspective. RSC Adv. 2014;4:23642–8.

    Article  CAS  Google Scholar 

  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods. 1983;55:55–63.

    Article  Google Scholar 

  15. Sai KP, Jagannadham MV, Vairamani M, Raju NP, Devi AS, Nagaraj R, et al. Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. J Biol Chem.2001;276:2701–7.

    Article  CAS  Google Scholar 

  16. Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials. 2002;23:4827–32.

    Article  CAS  Google Scholar 

  17. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials. 2001;22:763–8.

    Article  CAS  Google Scholar 

  18. Pastar I, Stojadinovic O, Tomic-Canic M. Role of keratinocytes in healing of chronic wounds. Surg Technol Int. 2008;17:105–12.

    Google Scholar 

  19. Wojtowicz AM, Oliveira S, Carlson MW, Zawadzka A, Rousseau CF, Baksh D. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014;22:246–55.

    Article  Google Scholar 

  20. Hou JZ, Xue HL, Li LL, Dou YL, Wu ZN, Zhang PP. Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polym Bull. 2016;73:2889–906.

    Article  CAS  Google Scholar 

  21. Xu J, Cai N, Xu W, Xue Y, Wang Z, Dai Q, et al. Mechanical enhancement of nanofibrous scaffolds through polyelectrolyte complexation. Nanotechnology. 2012;24:025701.

    Article  Google Scholar 

  22. Breuls RG, Jiya TU, Smit TH. Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop J. 2008;2:103–9.

    Article  Google Scholar 

  23. Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011;7:3113–22.

    Article  CAS  Google Scholar 

  24. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996;84:345–57.

    Article  CAS  Google Scholar 

  25. Matsunaga T, Iyoda T, Fukai F. Adhesion-dependent cell regulation via adhesion molecule, integrin: therapeutic application of integrin activation-modulating factors. In: Ohshima H, Makino K, editors. Colloid and interface science in pharmaceutical research and development. Amsterdam: Elsevier; 2014. p. 243–260.

    Chapter  Google Scholar 

  26. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways. Sci Rep. 2015;5:11544.

    Article  Google Scholar 

  27. Fu X, Xu M, Liu J, Qi Y, Li S, Wang H. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials. 2014;35:1496–506.

    Article  CAS  Google Scholar 

  28. Uynuk-Ool T, Rothdiener M, Walters B, Hegemann M, Palm J, Nguyen P, et al. The geometrical shape of mesenchymal stromal cells measured by quantitative shape descriptors is determined by the stiffness of the biomaterial and by cyclic tensile forces. J Tissue Eng Regen Med. 2017;11:3508–22.

    Article  CAS  Google Scholar 

  29. Pasqualato A, Lei V, Cucina A, Dinicola S, D’Anselmi F, Proietti S, et al. Shape in migration: quantitative image analysis of migrating chemoresistant HCT-8 colon cancer cells. Cell Adh Migr.2013;7:450–9.

    Article  Google Scholar 

  30. Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci. 2011;123:133–43.

    Article  CAS  Google Scholar 

  31. Liu Z, Jiao Y, Wang T, Zhang Y, Xue W. Interactions between solubilized polymer molecules and blood components. J Control Release. 2012;160:14–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank The Director, CSIR-CLRI for providing the necessary infrastructure and resources to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Sai Korrapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakra, R., Kiran, M.S. & Korrapati, P.S. Electrospun gelatin–polyethylenimine blend nanofibrous scaffold for biomedical applications. J Mater Sci: Mater Med 30, 129 (2019). https://doi.org/10.1007/s10856-019-6336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6336-5

Navigation