Skip to main content
Log in

TIPE2 suppresses progression and tumorigenesis of the oral tongue squamous cell carcinoma by regulating FoxP3+ regulatory T cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

To discover the effect of tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) on the oral tongue squamous cell carcinoma (OTSCC) via affecting FoxP3+ regulatory T (Treg) cells. Immunohistochemistry was conducted to examine TIPE2 and FoxP3 expressions in OTSCC tumor tissues and corresponding oral mucosa. Tca8113 cells were transfected with TIPE2/control lentiviral activation particles followed by the detection with qRT-PCR, Western blotting, MTT assay, Wound healing, Transwell assay and Annexin V-FITC/PI staining. In vivo experiment was carried out on the nude mice xenografts of OTSCC with TIPE2 overexpression to observe the tumor volume and survival, and the CD4+ T cell subgroups were detected by flow cytometry. TIPE2 was lower in the OTSCC tissues than the corresponding oral mucosa, which was correlated with T stage, N stage, TNM stage, and differentiation of patients. Patients with TIPE2-positive expression had worse prognosis and lower expression of FoxP3+ Treg cells than the negative ones. Furthermore, TIPE2 overexpression curbed proliferation, invasion and migration of Tca8113 cells, while cell apoptosis was increased. Besides, TIPE2 suppressed the tumor growth and extended the survival of OTSCC mice, with the decreased proportion of FoxP3+ Treg cells in the spleen and tumor-infiltrated lymphocytes (TILs). The clinical results showed the down-regulation of TIPE2 in OTSCC tissues. Meanwhile TIPE2 overexpression affected OTSCC cells biological behavior in vitro, as well as exhibited strong tumor-growth suppressive effects in vivo, which may be a potential therapeutic target in OTSCC via regulating FoxP3+ Treg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bordoloi D, Banik K, Shabnam B, Padmavathi G, Monisha J, Arfuso F, et al. (2018) TIPE Family of Proteins and Its Implications in Different Chronic Diseases. Int J Mole Sci. 19(10)

  • Bordoloi D, Banik K, Padmavathi G, Vikkurthi R, Harsha C, Roy NK, et al. (2019) TIPE2 Induced the Proliferation, Survival, and Migration of Lung Cancer Cells Through Modulation of Akt/mTOR/NF-kappaB Signaling Cascade. Biomolecules. 9(12)

  • Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W (2018) CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18(10):635–647

    CAS  PubMed  Google Scholar 

  • Cao X, Zhang L, Shi Y, Sun Y, Dai S, Guo C, Zhu F, wang Q, Wang J, Wang X, Chen YH, Zhang L (2013) Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1. Mol Cancer 12(1):149

    PubMed  PubMed Central  Google Scholar 

  • Deng B, Feng Y, Deng B (2015) TIPE2 mediates the suppressive effects of Shikonin on MMP13 in osteosarcoma cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 37(6):2434–2443

    CAS  Google Scholar 

  • Ding J, Su J, Zhang L, Ma J (2015) Crocetin activates Foxp3 through TIPE2 in asthma-associated Treg cells. Cellular Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharm 37(6):2425–2433

    CAS  Google Scholar 

  • Fan YC, Wang N, Sun YY, Xiao XY, Wang K (2015) TIPE2 mRNA level in PBMCs serves as a novel biomarker for predicting short-term mortality of acute-on-chronic hepatitis B liver failure: a prospective single-center study. Medicine (Baltimore) 94(39):e1638

    CAS  Google Scholar 

  • Fan T, Huang X, Liu C, Liu R, Wang T, Ruan Q (2018) Egress of murine regulatory T cells from the thymus requires TIPE2. Biochem Biophys Res Commun 500(2):376–383

    CAS  PubMed  Google Scholar 

  • Gonzaga AKG, Santos HBP, Crispim JCO, Souza LB, Palomino GM (2019) Immunohistochemical evaluation of HLA-G and FoxP3+ T regulatory cells in oral cavity and lower lip squamous cell carcinomas. Brazilian oral research 33:e020

    PubMed  Google Scholar 

  • Gus-Brautbar Y, Johnson D, Zhang L, Sun H, Wang P, Zhang S, Zhang L, Chen YH (2012) The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell 45(5):610–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothé F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanakawa H, Orita Y, Sato Y, Takeuchi M, Ohno K, Gion Y, Tsukahara K, Tamamura R, Ito T, Nagatsuka H, Nishizaki K, Yoshino T (2014) Regulatory T-cell infiltration in tongue squamous cell carcinoma. Acta Otolaryngol 134(8):859–864

    CAS  PubMed  Google Scholar 

  • Hao C, Zhang N, Geng M, Ren Q, Li Y, Wang Y, Chen YH, Liu S (2016) Clinical significance of TIPE2 protein Upregulation in non-Hodgkin's lymphoma. J Histochem Cytochem: Off J Histochem Soc 64(9):556–564

    CAS  Google Scholar 

  • Jia L, Gui B, Tian P, Yao G, Fu R, Wang L, Ge H, Ou Y (2013) TIPE2, a novel biomarker for clinical chronic kidney allograft rejection. Artif Organs 37(2):221–225

    CAS  PubMed  Google Scholar 

  • Jia W, Li Z, Chen J, Sun L, Liu C, Wang S, Chi J, Niu J, Lai H (2018) TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC). Cell & bioscience 8:49

    Google Scholar 

  • Kheirollahi K Correlation between chronic inflammation and oral squamous cell carcinoma (OSCC). Oral Oncol 50(10):e52

  • Kosmehl H (2006) Current classification of precursor lesions of oral squamous cell carcinoma principles of the WHO classification 2005. Mund Kiefer Und Gesichtschirurgie 10(2):89–93

    Google Scholar 

  • Li Y, Li X, Liu G, Sun R, Wang L, Wang J, Wang H (2015) Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer. Biochem Biophys Res Commun 457(1):43–49

    CAS  PubMed  Google Scholar 

  • Li Z, Guo C, Liu X, Zhou C, Zhu F, Wang X, Wang Q, Shi Y, Wang J, Zhao W, Zhang L (2016) TIPE2 suppresses angiogenesis and non-small cell lung cancer (NSCLC) invasiveness via inhibiting Rac1 activation and VEGF expression. Oncotarget. 7(38):62224–62239

    PubMed  PubMed Central  Google Scholar 

  • Liu QQ, Zhang FF, Wang F, Qiu JH, Luo CH, Zhu GY, Liu YF (2015) TIPE2 inhibits lung Cancer growth attributing to promotion of apoptosis by regulating some apoptotic molecules expression. PLoS One 10(5):e0126176

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Fan Y, Shi Y, Lin Z, Huang X, Huang W, Shen D, Qi Z (2018) Knockdown of TIPE2 increases the proliferation in lipopolysaccharide-stimulated gastric cancer cells. BMC Cancer 18(1):857

    PubMed  PubMed Central  Google Scholar 

  • Luan YY, Yao YM, Zhang L, Dong N, Zhang QH, Yu Y, Sheng ZY (2011) Expression of tumor necrosis factor-alpha induced protein 8 like-2 contributes to the immunosuppressive property of CD4(+)CD25(+) regulatory T cells in mice. Mol Immunol 49(1–2):219–226

    CAS  PubMed  Google Scholar 

  • Ma Y, Liu X, Wei Z, Wang X, Wang Z, Zhong W, Li Y, Zhu F, Guo C, Zhang L, Wang X (2013) The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scand J Immunol 78(6):523–528

    CAS  PubMed  Google Scholar 

  • Mason TJ, Matthews M (2012) Aquatic environment, housing, and management in the eighth edition of the guide for the care and use of laboratory animals: additional considerations and recommendations. J Am Assoc Lab Anim Sci 51(3):329–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montes HZ (2010) TNM Classification of Malignant Tumors, 7th edition. Int J Rad Oncol Biol Physics 78(4):1278

    Google Scholar 

  • Naruse T, Yanamoto S, Yamada SI, Takahashi H, Matsushita Y, Imayama N et al (2015) Immunohistochemical study of vascular endothelial growth factor-C/vascular endothelial growth factor receptor-3 expression in oral tongue squamous cell carcinoma: correlation with the induction of lymphangiogenesis. Oncol Lett 10(4):2027–2034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti G, Soutar DS, Jackson MS, Wrench AA, Robertson G (2004) Chewing and swallowing after surgical treatment for oral cancer: functional evaluation in 196 selected cases. Plast Reconstr Surg 114(2):329–338

    PubMed  Google Scholar 

  • Oho M, Nakano R, Nakayama R, Sakurai W, Miyamoto A, Masuhiro Y, Hanazawa S (2016) TIPE2 (tumor necrosis factor alpha-induced protein 8-like 2) is a novel negative regulator of TAK1 signal. J Biol Chem 291(43):22650–22660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB (2018) Novel tumor necrosis factor-alpha induced protein eight (TNFAIP8/TIPE) family: functions and downstream targets involved in cancer progression. Cancer Lett 432:260–271

    CAS  PubMed  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran M, Looney S, Singh N, Elashiry M, Meghil MM, El-Awady AR et al (2019) Systemic antibiotic therapy reduces circulating inflammatory dendritic cells and Treg-Th17 plasticity in periodontitis. J Immunol 202(9):2690–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins PF (2017) Tumor-infiltrating lymphocyte therapy and Neoantigens. Cancer J 23(2):138–143

    CAS  PubMed  Google Scholar 

  • Sadahiro S, Suzuki T, Tanaka A, Okada K, Saito G, Miyakita H et al (2019) Induction of CD3+ and FoxP3+ T cells in left-sided colorectal tumors after UFT/LV chemotherapy. Anticancer Res 39(4):1997–2005

    PubMed  Google Scholar 

  • Serpa MS, Mafra RP, Queiroz S, Silva LPD, Souza LB, Pinto LP (2018) Expression of urokinase-type plasminogen activator and its receptor in squamous cell carcinoma of the oral tongue. Brazilian oral research. 32:e93

    PubMed  Google Scholar 

  • Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, Kuchimaru T, Sakamoto T, Watanabe H, Kondoh G, Kizaka-Kondoh S (2018) Novel adherent CD11b(+) gr-1(+) tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 9(13):11209–11226

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jiang Y, Zhou J, Song W, Li J, Wang M, Chen J, Xu R, Zhang J, Ma F, Chen YH, Ma Y (2016) Hepatitis C virus promotes hepatocellular carcinogenesis by targeting TIPE2, a new regulator of DNA damage response. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37(11):15265–15274

    CAS  Google Scholar 

  • Wang K, Ren Y, Liu Y, Zhang J, He JJ (2017) Tumor necrosis factor (TNF)-alpha-induced protein 8-like-2 (TIPE2) inhibits proliferation and tumorigenesis in breast Cancer cells. Oncol Res 25(1):55–63

    PubMed  Google Scholar 

  • Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, Tang G, Shen Q (2015) Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res 5(7):2190–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Zhang L, Xu K, Sun C, Lei T, Peng J, Liu G, Wang R, Zhao Y (2012) Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol 27(1):30–38

    PubMed  Google Scholar 

  • Wu DD, Liu SY, Gao YR, Lu D, Hong Y, Chen YG, Dong PZ, Wang DY, Li T, Li HM, Ren ZG, Guo JC, He F, Ren XQ, Sun SY, Duan SF, Ji XY (2019) Tumour necrosis factor-alpha-induced protein 8-like 2 is a novel regulator of proliferation, migration, and invasion in human rectal adenocarcinoma cells. J Cell Mol Med 23(3):1698–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Wu Y, Huang Y, Yan C, Liu Y, Wang Z, Wang X, Wen Y, Wang C, Li L (2012) RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Molecular therapy : the journal of the American Society of Gene Therapy 20(2):398–407

    CAS  Google Scholar 

  • Zhang Z, Liu L, Liu C, Cao S, Zhu Y, Mei Q (2016) TIPE2 suppresses the tumorigenesis, growth and metastasis of breast cancer via inhibition of the AKT and p38 signaling pathways. Oncol Rep 36(6):3311–3316

    CAS  PubMed  Google Scholar 

  • Zhang Q, Huang D, Zhang Z, Feng Y, Fu M, Wei M et al (2019) High expression of TMEM40 contributes to progressive features of tongue squamous cell carcinoma. Oncol Rep 41(1):154–164

    CAS  PubMed  Google Scholar 

  • Zhao Q, Zhao M, Dong T, Zhou C, Peng Y, Zhou X, Fan B, Ma W, Han M, Liu S (2015) Tumor necrosis factor-alpha-induced protein-8 like-2 (TIPE2) upregulates p27 to decrease gastic cancer cell proliferation. J Cell Biochem 116(6):1121–1129

    CAS  PubMed  Google Scholar 

  • Zhou WN, Du YF, Zheng Y, Zhang W, Wu YN, Song XM et al (2019) Inactivation of RUNX3 protein expression in tongue squamous cell carcinoma and its association with clinicopathological characteristics. Mol Med Rep 19(2):885–894

    CAS  PubMed  Google Scholar 

  • Zhu L, Zhang X, Fu X, Li Z, Sun Z, Wu J, Wang X, Wang F, Li X, Niu S, Ding M, Yang Z, Yang W, Yin M, Zhang L, Zhang M (2018) TIPE2 suppresses progression and tumorigenesis of esophageal carcinoma via inhibition of the Wnt/beta-catenin pathway. J Transl Med 16(1):7

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PNG 1514 kb)

ESM 2

(PNG 300 kb)

ESM 3

(PNG 1580 kb)

ESM 4

(PNG 193 kb)

ESM 5

(PNG 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, LL. TIPE2 suppresses progression and tumorigenesis of the oral tongue squamous cell carcinoma by regulating FoxP3+ regulatory T cells. J Bioenerg Biomembr 52, 279–289 (2020). https://doi.org/10.1007/s10863-020-09840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-020-09840-w

Keywords

Navigation