Skip to main content
Log in

Nonadditive Interactions in Protein Folding: The Zipper Model of Cytochrome c

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Hydrogen exchange experiments (Krishna et al. in J. Mol. Biol. 359:1410, 2006) reveal that folding–unfolding of cytochrome c occurs along a defined pathway in a sequential, stepwise manner. The simplified zipper-like model involving nonadditive coupling is proposed to describe the classical “on pathway” folding–unfolding behavior of cytochrome c. Using free energy factors extracted from HX experiments, the model can predict and explain cytochrome c behavior in spectroscopy studies looking at folding equilibria and kinetics. The implications of the proposed model are discussed for such problems as classical pathway vs. energy landscape conceptions, structure and function of a native fold, and interplay of secondary and tertiary interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frauenfelder, H., Wolynes, P.G., Austin, R.H.: Biological physics. Rev. Mod. Phys. 71, 419–430 (1999)

    Article  Google Scholar 

  2. Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

    Article  Google Scholar 

  3. Levinthal, C.: How to fold graciously. In: Mossbauer Spectroscopy in Biological Systems: Proceedings of the University of Illinois Bulletin, vol. 67, pp. 22–24 (1969)

  4. Zwanzig, R., Szabo, A., Bagghi, B.: Levinthal’s paradox. Proc. Natl. Acad. Sci. USA 89, 20–22 (1992)

    Article  ADS  Google Scholar 

  5. Konermann, L.: Exploring the relationship between funneled energy landscapes and two-state protein folding. Proteins 65, 153–163 (2006)

    Article  Google Scholar 

  6. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)

    Google Scholar 

  7. Kim, P.S., Baldwin, R.L.: Intermediates in folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990)

    Article  ADS  Google Scholar 

  8. Englander, S.W.: Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 29, 213–238 (2000)

    Article  Google Scholar 

  9. Bai, Y.: Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chem. Rev. 106, 1757–1768 (2006)

    Article  Google Scholar 

  10. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways and the energy landscape protein folding: a synthesis. Proteins 21, 167–195 (1995)

    Article  Google Scholar 

  11. Chan, H.S., Dill, K.A.: Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins 30, 2–33 (1998)

    Article  Google Scholar 

  12. Onuchic, J.N., Wolynes, P.G.: Theory of protein folding. Curr. Opin. Struct. Biol. 14, 70–75 (2004)

    Article  Google Scholar 

  13. Bai, Y., Sosnick, T.R., Mayne, L., Englander, S.W.: Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995)

    Article  ADS  Google Scholar 

  14. Krishna, M.M.G., Maity, H., Rumbley, J.N., Lin, Y., Englander, S.W.: Order steps in the cytochrome c folding pathway: evidence for a sequential stabilization mechanism. J. Mol. Biol. 359, 1410–1419 (2006)

    Article  Google Scholar 

  15. Cecconi, C., Shank, E.A., Bustamante, C., Marqusee, S.: Direct observation of the three state folding of a single protein molecule. Science 309, 2057–2060 (2000)

    Article  ADS  Google Scholar 

  16. Feng, H., Zhou, Z., Bai, Y.: A protein folding pathway with multiple folding intermediates at atomistic resolution. Proc. Natl. Acad. Sci. USA 102, 5026–5031 (2005)

    Article  ADS  Google Scholar 

  17. Baldini, G., Cannone, F., Chirico, G., Collini, M., Campanini, B., Bettati, S., Mozzarelli, A.: Evidence of discrete substates and unfolding pathways in green fluorescent protein. Biophys. J. 92, 1724–1731 (2007)

    Article  ADS  Google Scholar 

  18. Privalov, P.L., Khechinashvilli, N.N.: A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 86, 665–684 (1974)

    Article  Google Scholar 

  19. McLendon, G., Smith, M.: Equilibrium and kinetic studies of unfolding of homologous cytochromes c. J. Biol. Chem. 253, 4004–4008 (1978)

    Google Scholar 

  20. Tsong, T.Y.: Detection of three kinetic phases in the thermal unfolding of ferricytochrome c. Biochemistry 12, 2209–2214 (1973)

    Article  Google Scholar 

  21. Myer, Y.P.: Ferricytochrome c refolding and the methionine 80–sulfur–iron linkage. J. Biol. Chem. 259, 6127–6133 (1984)

    Google Scholar 

  22. Elöve, G.A., Chaffotte, A.F., Roder, H., Goldberg, M.E.: Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876–6883 (1992)

    Article  Google Scholar 

  23. Knapp, J., Pace, C.N.: Guanidine hydrochloride and acid denaturation of horse, cow and Candida krusei cytochrome c. Biochemistry 13, 1289–1294 (1974)

    Article  Google Scholar 

  24. Maine, L., Englander, S.W.: Two-state vs. multistate protein unfolding studied by optical melting and hydrogen exchange. Protein Sci. 9, 1873–1877 (2000)

    Article  Google Scholar 

  25. Latypov, R.F., Cheng, H., Roder, N.A., Zhang, J., Roder, H.: Structural characterization of an equilibrium unfolding intermediate in cytochrome c. J. Mol. Biol. 357, 1009–1025 (2006)

    Article  Google Scholar 

  26. Roder, H., Elöve, G.A., Englander, S.W.: Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988)

    Article  ADS  Google Scholar 

  27. Xu, Y., Mayne, L., Englander, S.W.: Evidence for an unfolding and refolding pathway in cytochrome c. Nat. Struct. Biol. 5, 774–778 (1998)

    Article  Google Scholar 

  28. Hoang, L., Bedard, S., Krishna, M.M.G., Lin, Y., Englander, S.W.: Cytochrome c folding pathway: kinetic native-state hydrogen exchange. Proc. Natl. Acad. Sci. USA 99, 12173–12178 (2002)

    Article  ADS  Google Scholar 

  29. Krishna, M.M.G., Lin, Y., Mayne, L., Englander, S.W.: Intimate view of a kinetic protein folding intermediate: residue-resolved structure, interactions, stability and unfolding rates, homogenity. J. Mol. Biol. 334, 501–513 (2003)

    Article  Google Scholar 

  30. Maity, H., Maity, M., Englander, S.W.: How cytochrome c folds, and why: submolecular foldon units and their stepwise sequential stabilization. J. Mol. Biol. 343, 223–233 (2004)

    Article  Google Scholar 

  31. Maity, H., Maity, M., Krishna, M.M.G., Mayne, L., Englander, S.W.: Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 102, 4741–4746 (2005)

    Article  ADS  Google Scholar 

  32. Lifson, S., Roig, A.: On the theory of helix–coil transitions in polypeptides. J. Chem. Phys. 34, 1963–1974 (1961)

    Article  ADS  Google Scholar 

  33. Bryngelson, J.D., Wolynes, P.G.: Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84, 7524–7528 (1987)

    Article  ADS  Google Scholar 

  34. Thompson, P.A., Muñoz, V., Jas, G.S., Henry, E.R., Eaton, W.A., Hofrichter, J.: The helix–coil kinetics of a heteropeptide. J. Phys. Chem. B 104, 378–389 (2000)

    Article  Google Scholar 

  35. Liang, K.K., Hayashi, M., Shiu, Y.J., Mo, Y., Shao, J., Yan, Y., Lin, S.H.: Thermodynamics and kinetics of protein folding: a mean field theory. Phys. Chem. Chem. Phys. 5, 5300–5308 (2003)

    Article  Google Scholar 

  36. Morozov, A.N., Lin, S.H.: Modeling of folding unfolding mechanism in alanine based alpha helical polypeptides. J. Phys .Chem. B 110, 20555–20561 (2006)

    Article  Google Scholar 

  37. Hairyan, S.A., Mamasakhlisov, E.S., Morozov, V.F.: The helix–coil transition in polypeptides: a microscopic approach. II. Biopolymers 35, 75–84 (1995)

    Article  Google Scholar 

  38. Hansen, A., Jensen, M.H., Sneppen, K., Zocchi, G.: A hierarchical scheme for cooperativity and folding in proteins. Physica A 250, 355–361 (1998)

    Article  Google Scholar 

  39. Fichthorn, K., Weinberg, W.H.: Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95, 1090–1096 (1991)

    Article  ADS  Google Scholar 

  40. Weinkam, P., Zong, C., Wolynes, P.G.: A funneled energy landscape for cytochrome c directly predicts the sequential folding route inferred from hydrogen exchange experiments. Proc. Natl. Acad. Sci. USA 102, 12401–12406 (2005)

    Article  ADS  Google Scholar 

  41. Bruscolini, P., Pelizzola, A.: Exact solution of the Muñoz–Eaton model for protein folding. Phys. Rev. Lett. 88, 258101 (2002)

    Article  ADS  Google Scholar 

  42. Boeglin, A., Zhang, X.-G., Lin, S.H.: On the microscopic approach of the mean field kinetic Ising model. Physica A 137, 439–453 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  43. Makhatadze, G.I., Privalov, P.L.: Protein interactions with urea and guanidinium chloride: a calorimetric study. J. Mol. Biol. 226, 491–505 (1992)

    Article  Google Scholar 

  44. Smith, P.E.: The alanine dipeptide free energy surface in solution. J. Chem. Phys. 111, 5568–5579 (1999)

    Article  ADS  Google Scholar 

  45. Baldwin, R.L., Rose, G.D.: Is protein folding hierarchic? I. Local structure and peptide folding. Trends. Biochem. 24, 26–33 (1999)

    Article  Google Scholar 

  46. Dragomir, I., Hagarman, A., Wallace, C., Schweitzer-Stenner, R.: Optical band splitting and electronic perturbations of the heme chromophore in cytochrome c at room temperature probed by visible electronic circular dichroism spectroscopy. Biophys. J. 92, 989–998 (2007)

    Article  ADS  Google Scholar 

  47. Milne, J.S., Xu, Y., Mayne, L.C., Englander, S.W.: Experimental study of the protein folding landscape: unfolding reactions in cytochrome c. J. Mol. Biol. 290, 811–822 (1999)

    Article  Google Scholar 

  48. Madison, V., Schelmann, J.: Optical activity of polypeptides and proteins. Biopolymers 11, 1041–1076 (1972)

    Article  Google Scholar 

  49. Bushnell, G.W., Louie, G.V., Brayer, G.D.: High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595 (1990)

    Article  Google Scholar 

  50. Scholtz, J., Marqusee, S., Baldwin, R.L., York, E.J., Stewart, J.M., Santoro, M., Bolen, D.W.: Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc. Natl. Acad. Sci. USA 88, 2854–2858 (1991)

    Article  ADS  Google Scholar 

  51. Shastry, M.C., Roder, H.: Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat. Struct. Biol. 5, 385–392 (1998)

    Article  Google Scholar 

  52. Krishna, M.M.G., Lin, Y., Rumbley, J.N., Englander, S.W.: Cooperative omega loops in cytochrome c: role in folding and function. J. Mol. Biol. 331, 29–36 (2003)

    Article  Google Scholar 

  53. Fetrow, J.S.: Protein motifs 6. Omega-loops—nonregular secondary structures significant in protein function and stability. FASEB J. 9, 708–717 (1995)

    Google Scholar 

  54. Shiu, Y.J., Jeng, U.S., Su, C., Huang, Y.S., Hayashi, M., Liang, K.K., Yeh, Y.L., Lin, S.H.: A modified Ising model for the thermodynamic properties of local and global protein folding–unfolding observed by circular dichroism and small angle X-ray scattering. J. Appl. Crystallogr. (Suppl) 40, 195–199 (2007)

    Article  Google Scholar 

  55. Bryngelson, J.D., Wolynes, P.G.: Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902–6915 (1989)

    Article  Google Scholar 

  56. Metzler, R., Klafter, J., Jortner, J.: Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Natl. Acad. Sci. USA 96, 11085–11089 (1999)

    Article  ADS  Google Scholar 

  57. Colon, W., Elöve, G.A., Wakem, L.P., Shermann, F., Roder, H.: Side chain packing plays a critical role in the kinetics of cytochrome c folding. Biochemistry 35, 5538–5549 (1996)

    Article  Google Scholar 

  58. Sosnick, T.R., Mayne, L., Hiller, R., Englander, S.W.: The barriers in protein folding. Nat. Struct. Biol. 1, 149–156 (1994)

    Article  Google Scholar 

  59. Wood, L.C., White, T.B., Ramdas, L., Nall, B.T.: Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c. Biochemistry 27, 8562–8568 (1988)

    Article  Google Scholar 

  60. Dill, K.A., Fiebig, K.M., Chan, H.S.: Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993)

    Article  ADS  Google Scholar 

  61. Voelz, V.A., Dill, K.A.: Exploring zipping and assembly as a protein folding principle. Proteins 66, 877–888 (2007)

    Article  Google Scholar 

  62. Lednev, I.K., Karnoup, A.S., Sparrow, M.C., Asher, S.A.: Transient UV Raman spectroscopy finds no crossing barrier between the peptide R-helix and fully random coil conformation. J. Am. Chem. Soc. 123, 2388–2392 (2001)

    Article  Google Scholar 

  63. Muñoz, V., Ghirlando, R., Blanco, F.J., Jas, G.S., Hofritcher, J., Eaton, W.A.: Folding and aggregation kinetics of a β-hairpin. Biochemistry 45, 7023–7035 (2006)

    Article  Google Scholar 

  64. Makarov, D.E., Plaxco, K.: The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci. 12, 17–26 (2003)

    Article  Google Scholar 

  65. Young, W.S., Brooks III, C.L.: A Microscopic view of helix propagation; N and C terminal growth in alanine helices. J. Mol. Biol. 259, 560–572 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Morozov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.N., Shiu, Y.J., Liang, C.T. et al. Nonadditive Interactions in Protein Folding: The Zipper Model of Cytochrome c . J Biol Phys 33, 255–270 (2007). https://doi.org/10.1007/s10867-008-9062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9062-7

Keywords

Navigation