Skip to main content
Log in

Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model’s thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Garcia-Mira et al. [39] adopted a concept of temperature of convergence in the WSME model, similar to the free energy expansion used herein. However, our approach emphasizes the local folding behavior for foldon units rather than native stretches.

  2. Where N is even, and the foldons in the turn region of the β-hairpin may form an energetically unfavorable steric hindrance. Therefore, this case is not of interest (at least for the study herein).

  3. The numerical calculations for this study were performed using MATLAB version 7.6.0 (The MathWorks, Inc.).

  4. The value ϵ 13 = − 1.1 (kcal/mol) was referenced to the paper published by Muñoz et al. [7].

  5. The method is somewhat different from that of Bruscolini et al. [74], who used \(\left\langle {x_3 x_5 x_{12} x_{14} } \right\rangle \) as the population of the hydrophobic cluster formation, as they adopted the residue as the index.

  6. The least-square fitting procedure was conducted using Matlab Curve Fitting Toolbox 1.2.1 (The MathWorks, Inc.).

  7. The normalization procedure was performed according to the equation, \({\left( {\mbox{Y}_\mathrm{u} -\mbox{Y}_{\mathrm{obs}} } \right)} / {\left( {\mbox{Y}_\mathrm{u} -\mbox{Y}_\mathrm{n} } \right)}\), where Yobs denotes the observed FRET efficiency; Yu (unfolded baseline) and Yn (folded baseline) are assumed to be linearly dependent on temperature.

  8. The least-square fitting procedure was conducted using MATLAB Curve Fitting Toolbox 1.2.1 (The MathWorks, Inc.).

  9. The software Engauge Digitizer 4.1 was used to extract data points from the published papers.

  10. Whether the equivalence of heat and van’t Hoff enthalpy is valid is not discussed herein.

  11. The value |Δs| = 0.0032 (kcal/mol K) was referenced to the paper published by Muñoz et al. [7].

  12. We assume that the effect of volume change on the energy (\(H=E+{\it PV}\)), during protein folding-unfolding is negligible; therefore, H ≈ E. Similarly, there is no need to distinguish \(C_p =\left( {\frac{dH}{dT}} \right)_p \) from \(C_v =\left( {\frac{dE}{dT}} \right)_v \); therefore, C = C p  = C v .

References

  1. Anfinsen, C.B.: Principles that govern folding of protein chains. Science 181, 223–230 (1973)

    Article  ADS  Google Scholar 

  2. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Ann. Rev. Biophys. 37, 289–316 (2008)

    Article  Google Scholar 

  3. Barrick, D.: What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding? Phys. Biol. 6, 015001 (2009)

    Article  ADS  Google Scholar 

  4. Thirumalai, D., O’Brien, E.P., Morrison, G., Hyeon, C.: Theoretical perspectives on protein folding. Annu. Rev. Biophys. 39, 159–183 (2010)

    Article  Google Scholar 

  5. Bai, Y.W., Sosnick, T.R., Mayne, L., Englander, S.W.: Protein-folding intermediates—native-state hydrogen-exchange. Science 269, 192–197 (1995)

    Article  ADS  Google Scholar 

  6. Muñoz, V., Henry, E.R., Hofrichter, J., Eaton, W.A.: A statistical mechanical model for beta-hairpin kinetics. Proc. Natl. Acad. Sci. USA 95, 5872–5879 (1998)

    Article  ADS  Google Scholar 

  7. Muñoz, V., Thompson, P.A., Hofrichter, J., Eaton, W.A.: Folding dynamics and mechanism of beta-hairpin formation. Nature 390, 196–199 (1997)

    Article  ADS  Google Scholar 

  8. Lewandowska, A., Oldziej, S., Liwo, A., Scheraga, H.A.: Beta-hairpin-forming peptides; models of early stages of protein folding. Biophys. Chemist. 151, 1–9 (2010)

    Article  Google Scholar 

  9. Senn, H.M., Thiel, W.: QM/MM methods for biological systems. In: Reiher, M. (ed.) Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations. Topics in Current Chemistry, vol. 268, pp. 173–290 (2007)

  10. Zimm, B.H., Bragg, J.K.: Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–535 (1959)

    Article  ADS  Google Scholar 

  11. Lifson, S.: Theory of helix-coil transition in polypeptides. J. Chem. Phys. 34, 1963–1974 (1961)

    Article  ADS  Google Scholar 

  12. Doig, A.J., Chakrabartty, A., Klingler, T.M., Baldwin, R.L.: Determination of free energies of N-capping in alpha-helices by modification of the Lifson–Roig helix-coil theory to include N-capping and C-capping. Biochemistry 33, 3396–3403 (1994)

    Article  Google Scholar 

  13. Thompson, P.A., Muñoz, V., Jas, G.S., Henry, E.R., Eaton, W.A., Hofrichter, J.: The helix-coil kinetics of a heteropeptide. J. Phys. Chem. B 104, 378–389 (2000)

    Article  Google Scholar 

  14. Bruscolini, P., Pelizzola, A.: Exact solution of the Muñoz–Eaton model for protein folding. Phys. Rev. Lett. 88, 258101 (2002)

    Article  ADS  Google Scholar 

  15. Liang, K.K., Hayashi, M., Shiu, Y.J., Mo, Y., Shao, J.S., Yan, Y.J., Lin, S.H.: Thermodynamics and kinetics of protein folding: a mean field theory. Phys. Chem. Chem. Phys. 5, 5300–5308 (2003)

    Article  Google Scholar 

  16. Morozov, A.N., Shiu, Y.J., Liang, C.T., Tsai, M.Y., Lin, S.H.: Nonadditive interactions in protein folding: the Zipper model of cytochrome c. J. Biol. Phys. 33, 255–270 (2007)

    Article  Google Scholar 

  17. Morozov, A.N., Lin, S.H.: Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides. J. Phys. Chem. B 110, 20555–20561 (2006)

    Article  Google Scholar 

  18. Muñoz, V., Eaton, W.A.: A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. USA 96, 11311–11316 (1999)

    Article  ADS  Google Scholar 

  19. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)

    MATH  Google Scholar 

  20. Boeglin, A., Zhang, X.G., Lin, S.H.: On the microscopic approach of the mean field kinetic Ising model. Physica A 137, 439–453 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  21. Rozenbaum, V.M., Morozov, A.N.: Fluctuation interaction of Ising subsystems. JETP Lett. 75, 631–634 (2002)

    Article  ADS  Google Scholar 

  22. Rozenbaum, V.M., Morozov, A.N., Lin, S.H.: Orientational regularities in two-dimensional quasidipole system with degenerate ground states. Phys. Rev. B 68, 155405 (2003)

    Article  ADS  Google Scholar 

  23. Rozenbaum, V.M., Morozov, A.N., Lin, S.H.: Generalized Ashkin-Teller model on the Bethe lattice. Phys. Rev. B 71, 195411 (2005)

    Article  ADS  Google Scholar 

  24. Fersht, A.: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman, New York (1999)

    Google Scholar 

  25. Kloss, E., Courtemanche, N., Barrick, D.: Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch. Biochem. Biophys. 469, 83–99 (2008)

    Article  Google Scholar 

  26. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  27. Ananikyan, N.S., Hajryan, S.A., Mamasakhlisov, E.S., Morozov, V.F.: Helix-coil transition in polypeptides: a microscopical approach. Biopolymers 30, 357–367 (1990)

    Article  Google Scholar 

  28. Schreck, J.S., Yuan, J.M.: Exactly solvable model for helix-coil-sheet transitions in protein systems. Phys. Rev. E 81, 061919 (2010)

    Article  ADS  Google Scholar 

  29. Faccin, M., Bruscolini, P., Pelizzola, A.: Analysis of the equilibrium and kinetics of the ankyrin repeat protein myotrophin. J. Chem. Phys. 134, 075102 (2011)

    Article  ADS  Google Scholar 

  30. Bruscolini, P., Naganathan, A.N.: Quantitative prediction of protein folding behaviors from a simple statistical model. J. Am. Chem. Soc. 133, 5372–5379 (2011)

    Article  Google Scholar 

  31. Imparato, A., Pelizzola, A., Zamparo, M.: Equilibrium properties and force-driven unfolding pathways of RNA molecules. Phys. Rev. Lett. 103, 188102 (2009)

    Article  ADS  Google Scholar 

  32. Tokar, V.I., Dreysse, H.: Transfer matrix solution of the Wako-Saitô-Muñoz-Eaton model augmented by arbitrary short-range interactions. J. Stat. Mech.: Theory and Experiment, 08028 (2010)

  33. Chung, H.S., Tokmakoff, A.: Temperature-dependent downhill unfolding of ubiquitin. II. Modeling the free energy surface. Proteins Struct. Funct. Bioinform. 72, 488–497 (2008)

    Article  Google Scholar 

  34. Chodera, J.D., Swope, W.C., Pitera, J.W., Dill, K.A.: Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul. 5, 1214–1226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zwanzig, R.: Simple model of protein folding kinetics. Proc. Natl. Acad. Sci. USA 92, 9801–9804 (1995)

    Article  ADS  Google Scholar 

  36. Flammini, A., Banavar, J.R., Maritan, A.: Energy landscape and native-state structure of proteins—a simplified model. Europhys. Lett. 58, 623–629 (2002)

    Article  ADS  Google Scholar 

  37. Wako, H., Saitô, N.: Statistical mechanical theory of protein conformation. 1. General considerations and application to homopolymers. J. Phys. Soc. Jpn. 44, 1931–1938 (1978)

    Article  ADS  Google Scholar 

  38. Wako, H., Saitô, N.: Statistical mechanical theory of protein conformation. 2. Folding pathway for protein. J. Phys. Soc. Jpn. 44, 1939–1945 (1978)

    Article  ADS  Google Scholar 

  39. Garcia-Mira, M.M., Sadqi, M., Fischer, N., Sanchez-Ruiz, J.M., Muñoz, V.: Experimental identification of downhill protein folding. Science 298, 2191–2195 (2002)

    Article  ADS  Google Scholar 

  40. Zamparo, M., Pelizzola, A.: Kinetics of the Wako-Saitô-Muñoz-Eaton model of protein folding. Phys. Rev. Lett. 97, 068106 (2006)

    Article  ADS  Google Scholar 

  41. Jackson, S.E.: How do small single-domain proteins fold? Fold. Des. 3, R81–R91 (1998)

    Article  Google Scholar 

  42. Makhatadze, G.I., Privalov, P.L.: Energetics of protein structure. Adv. Protein Chem. 47, 307–425 (1995)

    Article  Google Scholar 

  43. Santoro, M.M., Bolen, D.W.: Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988)

    Article  Google Scholar 

  44. Fung, A., Li, P., Godoy-Ruiz, R., Sanchez-Ruiz, J.M., Muñoz, V.: Expanding the realm of ultrafast protein folding: gpW, a midsize natural single-domain with alpha+beta topology that folds downhill. J. Am. Chem. Soc. 130, 7489–7495 (2008)

    Article  Google Scholar 

  45. Naganathan, A.N., Doshi, U., Muñoz, V.: Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments. J. Am. Chem. Soc. 129, 5673–5682 (2007)

    Article  Google Scholar 

  46. Sadqi, M., Fushman, D., Muñoz, V.: Atom-by-atom analysis of global downhill protein folding. Nature 442, 317–321 (2006)

    Article  ADS  Google Scholar 

  47. Muñoz, V.: Thermodynamics and kinetics of downhill protein folding investigated with a simple statistical mechanical model. Int. J. Quantum Chem. 90, 1522–1528 (2002)

    Article  Google Scholar 

  48. Shiu, Y.J., Jeng, U.S., Huang, Y.S., Lai, Y.H., Lu, H.F., Liang, C.T., Hso, I.J., Su, C.H., Su, C., Chao, I., Su, A.C., Lin, S.H.: Global and local structural changes of cytochrome c and lysozyme characterized by a multigroup unfolding process. Biophys. J. 94, 4828–4836 (2008)

    Article  Google Scholar 

  49. Moza, B., Qureshi, S.H., Islam, A., Singh, R., Anjum, F., Moosavi-Movahedi, A.A., Ahmad, F.: A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: structural and thermodynamic characterization. Biochemistry 45, 4695–4702 (2006)

    Article  Google Scholar 

  50. Pletneva, E.V., Gray, H.B., Winkler, J.R.: Many faces of the unfolded state: conformational heterogeneity in denatured yeast cytochrome c. J. Mol. Biol. 345, 855–867 (2005)

    Article  Google Scholar 

  51. Marmorino, J.L., Lehti, M., Pielak, G.J.: Native tertiary structure in an A-state. J. Mol. Biol. 275, 379–388 (1998)

    Article  Google Scholar 

  52. Segel, D.J., Fink, A.L., Hodgson, K.O., Doniach, S.: Protein denaturation: a small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c. Biochemistry 37, 12443–12451 (1998)

    Article  Google Scholar 

  53. Hamada, D., Kuroda, Y., Kataoka, M., Aimoto, S., Yoshimura, T., Goto, Y.: Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c. J. Mol. Biol. 256, 172–186 (1996)

    Article  Google Scholar 

  54. Hagihara, Y., Tan, Y., Goto, Y.: Comparison of the conformational stability of the molten globule and native states of horse cytochrome c: effects of acetylation, heat, urea and guanidine-hydrochloride. J. Mol. Biol. 237, 336–348 (1994)

    Article  Google Scholar 

  55. Privalov, P.L., Khechinashvili, N.N.: A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 86, 665–684 (1974)

    Article  Google Scholar 

  56. Krishna, M.M.G., Maity, H., Rumbley, J.N., Lin, Y., Englander, S.W.: Order of steps in the cytochrome c folding pathway: evidence for a sequential stabilization mechanism. J. Mol. Biol. 359, 1410–1419 (2006)

    Article  Google Scholar 

  57. Maity, H., Maity, M., Englander, S.W.: How cytochrome c folds, and why: Submolecular foldon units and their stepwise sequential stabilization. J. Mol. Biol. 343, 223–233 (2004)

    Article  Google Scholar 

  58. Milne, J.S., Xu, Y.J., Mayne, L.C., Englander, S.W.: Experimental study of the protein folding landscape: unfolding reactions in cytochrome c. J. Mol. Biol. 290, 811–822 (1999)

    Article  Google Scholar 

  59. Panchenko, A.R., Luthey-Schulten, Z., Wolynes, P.G.: Foldons, protein structural modules, and exons. Proc. Natl. Acad. Sci. USA 93, 2008–2013 (1996)

    Article  ADS  Google Scholar 

  60. Nickson, A.A., Stoll, K.E., Clarke, J.: Folding of a LysM domain: entropy-enthalpy compensation in the transition state of an ideal two-state folder. J. Mol. Biol. 380, 557–569 (2008)

    Article  Google Scholar 

  61. Tsai, M.Y., Morozov, A.N., Chu, K.Y., Lin, S.H.: Molecular dynamics insight into the role of tertiary (foldon) interactions on unfolding in cytochrome c. Chem. Phys. Lett. 475, 111–115 (2009)

    Article  ADS  Google Scholar 

  62. Qian, H.: Thermodynamic hierarchy and local energetics of folded proteins. J. Mol. Biol. 267, 198–206 (1997)

    Article  Google Scholar 

  63. Mayne, L., Englander, S.W.: Two-state vs. multistate protein unfolding studied by optical melting and hydrogen exchange. Protein Sci. 9, 1873–1877 (2000)

    Article  Google Scholar 

  64. Hughes, R.M., Waters, M.L.: Model systems for beta-hairpins and beta-sheets. Curr. Opin. Struct. Biol. 16, 514–524 (2006)

    Article  Google Scholar 

  65. Bakk, A., Hoye, J.S.: One-dimensional Ising model applied to protein folding. Physica A 323, 504–518 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. Cochran, A.G., Skelton, N.J., Starovasnik, M.A.: Tryptophan zippers: stable, monomeric beta-hairpins. Proc. Natl. Acad. Sci. USA 98, 5578–5583 (2001)

    Article  ADS  Google Scholar 

  67. Kobayashi, N., Honda, S., Yoshii, H., Munekata, E.: Role of side-chains in the cooperative beta-hairpin folding of the short C-terminal fragment derived from streptococcal protein G. Biochemistry 39, 6564–6571 (2000)

    Article  Google Scholar 

  68. Honda, S., Kobayashi, N., Munekata, E.: Thermodynamics of a beta-hairpin structure: evidence for cooperative formation of folding nucleus. J. Mol. Biol. 295, 269–278 (2000)

    Article  Google Scholar 

  69. Blanco, F.J., Rivas, G., Serrano, L.: A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat. Struct. Biol. 1, 584–590 (1994)

    Article  Google Scholar 

  70. Fesinmeyer, R.M., Hudson, F.M., Andersen, N.H.: Enhanced hairpin stability through loop design: the case of the protein G B1 domain hairpin. J. Am. Chem. Soc. 126, 7238–7243 (2004)

    Article  Google Scholar 

  71. Streicher, W.W., Makhatadze, G.I.: Calorimetric evidence for a two-state unfolding of the β-hairpin peptide Trpzip4. J. Am. Chem. Soc. 128, 30–31 (2006)

    Article  Google Scholar 

  72. Olsen, K.A., Fesinmeyer, R.M., Stewart, J.M., Andersen, N.H.: Hairpin folding rates reflect mutations within and remote from the turn region. Proc. Natl. Acad. Sci. USA 102, 15483–15487 (2005)

    Article  ADS  Google Scholar 

  73. Du, D.G., Tucker, M.J., Gai, F.: Understanding the mechanism of beta-hairpin folding via phi-value analysis. Biochemistry 45, 2668–2678 (2006)

    Article  Google Scholar 

  74. Bruscolini, P., Cecconi, F.: Mean-field approach for a statistical mechanical model of proteins. J. Chem. Phys. 119, 1248–1256 (2003)

    Article  ADS  Google Scholar 

  75. Tucker, M.J., Oyola, R., Gai, F.: Conformational distribution of a 14-residue peptide in solution: A fluorescence resonance energy transfer study. J. Phys. Chem. B 109, 4788–4795 (2005)

    Article  Google Scholar 

  76. Bruscolini, P., Cecconi, F.: Analysis of PIN1WW domain through a simple statistical mechanics model. Biophys. Chem. 115, 153–158 (2005)

    Article  Google Scholar 

  77. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy landscape of protein-folding—a synthesis. Proteins Struct. Funct. Gene. 21, 167–195 (1995)

    Article  Google Scholar 

  78. Liu, F., Du, D., Fuller, A.A., Davoren, J.E., Wipf, P., Kelly, J.W., Gruebele, M.: An experimental survey of the transition between two-state and downhill protein folding scenarios. Proc. Natl. Acad. Sci. USA 105, 2369–2374 (2008)

    Article  ADS  Google Scholar 

  79. Liu, F., Gruebele, M.: Tuning lambda(6–85) towards downhill folding at its melting temperature. J. Mol. Biol. 370, 574–584 (2007)

    Article  Google Scholar 

  80. Lewandowska, A., Oldziej, S., Liwo, A., Scheraga, H.A.: Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin-binding protein G from streptococcus. IV. Implication for the mechanism of folding of the parent protein. Biopolymers 93, 469–480 (2010)

    Article  Google Scholar 

  81. Lewandowska, A., Oldziej, S., Liwo, A., Scheraga, H.A.: Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions. Proteins Struct. Funct. Bioinform. 78, 723–737 (2010)

    Google Scholar 

  82. Skwierawska, A., Makowska, J., Oldziej, S., Liwo, A., Scheraga, H.A.: Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure. Proteins Struct. Funct. Bioinform. 75, 931–953 (2009)

    Article  Google Scholar 

  83. Skwierawska, A., Imudzinska, W., Oldziej, S., Liwo, A., Scheraga, H.A.: Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation. Proteins Struct. Funct. Bioinform. 76, 637–654 (2009)

    Article  Google Scholar 

  84. Espinosa, J.F., Syud, F.A., Gellman, S.H.: Analysis of the factors that stabilize a designed two-stranded antiparallel beta-sheet. Protein Sci. 11, 1492–1505 (2002)

    Article  Google Scholar 

  85. Wu, L., McElheny, D., Huang, R., Keiderling, T.A.: Role of Tryptophan-Tryptophan interactions in Trpzip beta-hairpin formation, structure, and stability. Biochemistry 48, 10362–10371 (2009)

    Article  Google Scholar 

  86. Juraszek, J., Bolhuis, P.G.: Effects of a mutation on the folding mechanism of a beta-hairpin. J. Phys. Chem. B 113, 16184–16196 (2009)

    Article  Google Scholar 

  87. Imamura, H., Chen, J.Z.Y.: Dependence of folding dynamics and structural stability on the location of a hydrophobic pair in beta-hairpins. Proteins Struct. Funct. Bioinform. 63, 555–570 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the National Science Council (Taiwan) for financial support. We also appreciate the help from Dr. Oleksandr Morozov from Florida International University for providing useful suggestions about this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Yeh Tsai.

Appendices

Appendix A: The phenomenological parameters

From (6), the free energy equation can be recast as

$$ \Delta G^{\,0}\left( T \right)=\Delta H^{\,0}\left( {T_{1/2}} \right)-T\Delta S^{\,0}\left( {T_{1/2}} \right), $$
(27)

where \(\Delta H^{\,0}\left( {T_{1/2}}\right)=T_{1/2} \cdot \Delta S^{\,0}\left( {T_{1/2} } \right)\). Both the enthalpy and entropy differences are constant and are characterized by the transition mid-point T 1/2. These two factors regulate the linear temperature dependence of free energy, thereby facilitating the folding-unfolding behavior. In the statistical mechanical models discussion, we replaced \(\Delta S^{\,0}\left( {T_{1/2}}\right)\) and \(\Delta H^{\,0}\left( {T_{1/2}}\right)\) with Δs and Δh, respectively, for convenience; thus, Δh can also be represented as T 1/2 · Δs. It should be noted that in the WSME model, entropy is the only concern for individual peptide bond units, as illustrated in (1). However, the M-WSME model uses the free energy equation from (6) to account for the folding of foldons; therefore, for local folding, the entropic cost is balanced by the newly added enthalpic factor for each foldon unit in the system. This is referred to as the “local-folding scheme” in terms of foldon units. In short, the enthalpy part and entropy part both have entropic interpretation and the resulting free energy change is generalized for each effective foldon unit in the system.

Appendix B: The contact-pair treatment—supplement

From (11), we briefly enumerate the configurations for the system as follows.

$$ \begin{array}{rll} Z&=&\left( 1 \right)\cdot \left\{ {\left( {\sum\limits_{x_{\alpha -1} } {\sum\limits_{x_{\alpha +1} } {B_{\alpha -1}^{x_{\alpha -1} } B_{\alpha +1}^{x_{\alpha +1} } } } } \right)\cdots \cdots \left( {\sum\limits_{x_1 } {\sum\limits_{x_N } {B_1^{x_1 } B_N^{x_N } } } } \right)} \right\}\\ &&+\left( {B_\alpha } \right)\cdot \left\{ {\left( {\sum\limits_{x_{\alpha -1} } {\sum\limits_{x_{\alpha +1} } {C_1^{x_{\alpha -1} x_{\alpha +1} } B_{\alpha -1}^{x_{\alpha -1} } B_{\alpha +1}^{x_{\alpha +1} } } } } \right)\cdots } \right.\\ &&\;\qquad\qquad\cdots \left. {\left( {\sum\limits_{x_1 } {\sum\limits_{x_N } {C_{\alpha - 1}^{x_{\alpha -1} x_{\alpha +1} x_{\alpha -2} x_{\alpha +2} \cdots x_1 x_N } B_1^{x_1 } B_N^{x_N } } } } \right)} \right\} . \end{array} $$
(28)

The above equation accounts for the α th peptide bond configurations; that is, the first term (see the first curly braces) denotes that x α  = 0 and the remaining configurations (x α − 1, x α + 1, ⋯ , x 1, x N ) are to be determined, while the second term (see the second curly braces) denotes that x α  = 1 and the remaining configurations are to be determined. Note that the first bracket in the second curly braces includes the configuration weights for the first contact pair (1 + B α − 1 + B α + 1 + C 1 B α − 1 B α + 1), which denote, respectively, the weights for the configurations (0, 0), (1, 0), (0, 1) and (1, 1). These weights are then divided into two groups: the group with the configuration (1, 1) and the other group with the remaining configurations: (0, 0), (1, 0) and (0, 1). Multiplying them out, it follows that

$$ \begin{array}{rll} Z&=&\left( 1 \right)\cdot \left\{ {\left( {\sum\limits_{x_{\alpha -1} } {\sum\limits_{x_{\alpha +1} } {B_{\alpha -1}^{x_{\alpha -1} } B_{\alpha +1}^{x_{\alpha +1} } } } } \right)\cdots \cdots \left( {\sum\limits_{x_1 } {\sum\limits_{x_N } {B_1^{x_1 } B_N^{x_N } } } } \right)} \right\}\\ &&+\left( {B_\alpha } \right)\left( {1+B_{\alpha -1} +B_{\alpha +1} } \right)\cdot \left\{ {\left( {\sum\limits_{x_{\alpha -2} } {\sum\limits_{x_{\alpha +2} } {B_{\alpha -2}^{x_{\alpha -2} } B_{\alpha +2}^{x_{\alpha +2} } } } } \right)\cdots \cdots \left( {\sum\limits_{x_1 } {\sum\limits_{x_N } {B_1^{x_1 } B_N^{x_N } } } } \right)} \right\}\\ &&+\,B_\alpha C_1 B_{\alpha -1} B_{\alpha +1} \left\{ {\left( {\sum\limits_{x_{\alpha -2} } {\sum\limits_{x_{\alpha +2} } {C_2^{x_{\alpha -2} x_{\alpha +2} } B_{\alpha -2}^{x_{\alpha -2} } B_{\alpha +2}^{x_{\alpha +2} } } } } \right)\cdots } \right.\\ &&\qquad\qquad\qquad\qquad\cdots \left. \left( {\sum\limits_{x_1 } {\sum\limits_{x_N } {C_{\alpha - 1}^{x_{\alpha -2} x_{\alpha +2} \cdots x_1 x_N } B_1^{x_1 } B_N^{x_N } } } } \right)\right\}. \end{array} $$
(29)

where Z 0 denotes the summation of the first and second terms, as shown in Section 2. Similarly, the same expansion performed on the curly braces of the third term and accounting for the configurations of the second contact pair (α − 2,α + 2), Z 1 is identified and so forth.

Appendix C: The single foldon unit case

The thermodynamic two-state model is one of the simplest thermodynamic models for protein folding thermodynamics [see Fig. 1]. It correlates with statistical thermodynamics via (7) and (23). In other words, the two-state model in protein thermodynamics corresponds effectively to the single foldon unit case (N = 1) in the M-WSME model.

In the case where N = 1, the interaction terms are excluded and only Δs is specified. Three different valuesFootnote 11 (|Δs| = 0.0032, 0.01 and 0.04 kcal/mol K) were used in our investigations, which indicate, respectively, small, middle, and large values assumed for the protein system. Note that Δs < 0 is defined for the WSME model and Δs > 0 for the M-WSME model and the definition does not change the thermodynamic interpretation of \(\left\langle {x_i } \right\rangle \), given that their absolute values are consistent. More specifically, Δs = − 0.0032, −0.01 and −0.04 (kcal/mol K), when the WSME model was investigated; while Δs = 0.0032, 0.01 and 0.04 (kcal/mol K), when the M-WSME model was studied. The thermodynamic fraction of the native state compared between the WSME and M-WSME models is given in Fig. 7. Our results show that there is no sigmoidal curve for the WSME model in any case that we studied; instead, a constant value for the fraction was observed and determined using Δs. However, the M-WSME model showed a sigmoidal curve and the Δs can be used to manipulate the sharpness (or smoothness) of the transition; the larger the |Δs| we use, the steeper the transition curve we obtain. The above results suggest that the WSME model cannot be used to describe protein folding in the single unit case due to the imbalance in the entropic cost for a single foldon unit. Therefore, the folding behavior is not shown. However, if the free energy balance is considered for each single foldon unit in the system (the local folding scheme), the folding behavior can be observed for a single foldon. Herein, we emphasize that the sigmoidal behavior from our treatment of a single foldon does not describe the exact form for the folded state in either a local or global sense.

Fig. 8
figure 8

Comparison of the thermodynamic native state fraction for the WSME (left) and M-WSME (right) models (N = 1). In each panel, the blue, red, and green solid lines denote, respectively, \(\left| {\Delta s} \right| = 0.0032\), 0.01 and 0.04 (kcal/mol K). (a) The WSME model. (b) The M-WSME model with T 1/2 = 300 K

In other words, the sigmoid is a thermodynamic behavior, and it describes the folded fraction, which fits the behavior observed from experiments, thus it can be used to trace the equilibrium folding-unfolding process. Thus, this description does not contradict the argument that a single foldon never folds without the aid of interactions with other foldon units. It should be noted that, given |Δs| = 0.04 (kcal/mol K), the M-WSME model showed a complete sigmoidal curve within the temperature range for biological relevance. This value could be used as a reference for other investigations in this paper.

Appendix D: The heat capacity equations

The heat capacity is a thermal-related physical quantity that can be obtained directly from the statistical mechanical relation

$$ \begin{array}{rll} C &=&\left( {\frac{dE}{dT}} \right)\\ &=&k_B \left[ {\frac{1}{Z}\cdot \frac{d}{dT}\left( {T^2\frac{dZ}{dT}} \right)-\left( {\frac{T\cdot {dZ} \mathord{\left/ {\vphantom {{dZ} {dT}}} \right. \kern-\nulldelimiterspace} {dT}}{Z}} \right)^2} \right]\end{array} $$
(30)

where E is the internal energy of the system,Footnote 12 Z denotes the partition function of the system and k B is the Boltzmann constant. Note that \(E=k_B T^2\left( {d\,\ln \,Z \mathord{\left/ {\vphantom {Z {dT}}} \right. \kern-\nulldelimiterspace} {dT}} \right)\) is used in (30). According to the set of reduced partition functions derived and shown from (14) through (20), the heat capacity equations for systems with a different N can, in principle, be derived.

For N = 1 (the M-WSME model),

$$ \overline C =\frac{\left( {\Delta h} \right)^2}{RT^2}P_1 \left( {1-P_1 } \right), $$
(31)

where R is the gas constant (in kcal/mol K), Δh = T 1/2 · Δs and \(\overline C \) denotes the heat capacity per mole. P 1 denotes the probability of the folded state (x 1 = 1); thus, the product P 1 (1 − P 1) indicates the transition probability from the folded (x 1 = 1) to the unfolded state (x 1 = 0).

For N = 3 (the M-WSME model),

$$ \overline C =\overline C_1 +\overline C_2 +\overline C_3 +\overline C_4, $$
(32)

where

$$ \overline C_1 =\frac{\left( {\epsilon_{13} -\Delta H} \right)^2}{RT^2}\left[ {P_{111} \times \left( {1-P_{111} } \right)}\right], $$
(33)

and ΔH = 3Δh. The product \(P_{111} \times \left( {1-P_{111} } \right)\) denotes the transition probability from the state (x 1, x 2, x 3 ) = (1, 1, 1) to (x 1, x 2, x 3 ) = (0, 0, 0). Note that the other components, \(\overline C_2\), \(\overline C_3 \) and \(\overline C_4 \), which denote certain complicated transitions among all the configurations, are not detailed here.

For N = 3 (the WSME model),

$$ \overline C = \frac{(\epsilon_{13})^2}{RT^2}P_{111}(1-P_{111}). $$
(34)

Herein, we do not intend to show the detailed derivation of \(\overline C_2 \), \(\overline C_3 \) and \(\overline C_4 \) shown in (32). Instead, we have focused on our preliminary derivation, which may be used to distinguish the thermodynamic interpretations of the M-WSME model from those of the WSME model. The detailed derivations are now in progress and will be published elsewhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, MY., Yuan, JM., Teranishi, Y. et al. Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model. J Biol Phys 38, 543–571 (2012). https://doi.org/10.1007/s10867-012-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9271-y

Keywords

Navigation