Skip to main content
Log in

Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A profiling float equipped with a fluorimeter, a dissolved oxygen (DO) sensor, and temperature and salinity sensors was deployed in the subtropical mode water (STMW) formation region of the North Pacific. It acquired quasi-Lagrangian, 5-day-interval time-series records from March to July 2006. The time-series distribution of chlorophyll showed a sustained and sizable subsurface maximum at 50–100 m, just above the upper boundary of the STMW, throughout early summer (May–July). The DO concentration in this lower euphotic zone (50–100 m) was almost constant and supersaturated in the same period, becoming more supersaturated with time. On the other hand, the DO concentration at 100–150 m near the upper boundary of the STMW decreased much more slowly compared with the main layer of STMW below 150 m, even though oxygen consumption by organisms was expected to be larger in the former depth range. The small temporal variations of DO in the lower euphotic zone and near the upper boundary of the STMW were reasonably explained by downward oxygen transport because of large diapycnal diffusion near the top of the STMW. Assuming that the oxygen consumption rate at 100–150 m was the same as that in the main layer of STMW and compensated by the downward oxygen flux, the diapycnal diffusivity was estimated to be 1.7 × 10−4 m2 s−1. Nitrate transport into the euphotic zone by the same large diffusion was estimated to be 0.8 mmol N m−2 day−1. All of the transported nitrate could have been used for photosynthesis by the phytoplankton; net community production was estimated to be 5.3 mmol C m−2 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17:589–602

    Google Scholar 

  • Anderson LA (1995) On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res I 42(9):1675–1680

    Article  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39:791–803

    Article  Google Scholar 

  • Emerson S, Quay P, Karl D, Winn C, Tupas L, Landry M (1997) Experimental determination of the organic flux from open-ocean surface waters. Nature 389:951–954

    Article  Google Scholar 

  • Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep Sea Res I 47:1183–1205

    Article  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  Google Scholar 

  • Gregg MC, Sanford TB (1980) Signatures of mixing from the Bermuda Slope, the Sargasso Sea and the Gulf Stream. J Phys Oceanogr 10:105–127

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modeling the global ocean. Academic Press, London, pp 373–386

    Chapter  Google Scholar 

  • Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific basin. J Geophys Res 103(C6):13055–13066

    Article  Google Scholar 

  • Hayward TL (1994) The shallow oxygen maximum layer and primary production. Deep Sea Res I 41(3):559–574

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific subtropical gyre. Ecosystems 2:181–214

    Article  Google Scholar 

  • Karl D, Latelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538

    Article  Google Scholar 

  • Laws EA, DiTullio GR, Redalje DG (1987) High phytoplankton growth and production rates in the North Pacific subtropical gyre. Limnol Oceanogr 32(4):905–918

    Article  Google Scholar 

  • Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703

    Article  Google Scholar 

  • Lewis MR, Harrison WG, Oakey NS, Hebert D, Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234:870–873

    Article  Google Scholar 

  • Macdonald AM, Suga T, Curry RG (2001) An isopycnally averaged North Pacific climatology. J Atmos Ocean Technol 18:394–420

    Article  Google Scholar 

  • McCarthy JJ, Goldman JC (1979) Nitrogenous nutrition of marine-phytoplankton in nutrient-depleted waters. Science 203(16):670–672

    Article  Google Scholar 

  • McGillicuddy DJ Jr, Robinson AR (1997) Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Res I 44(8):1427–1450

    Article  Google Scholar 

  • McGillicuddy DJ Jr, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266

    Article  Google Scholar 

  • McNeil JD, Jannasch HW, Dickey T, McGillicuddy D, Brzezinski M, Sakamoto CM (1999) New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. J Geophys Res 104(C7):15537–15548

    Article  Google Scholar 

  • Mori K, Uehara K, Kameda T, Kakehi S (2008) Direct measurements of dissipation rate of turbulent kinetic energy of North Pacific subtropical mode water. Geophys Res Lett 35:L05601. doi:10.1029/2007GL032867

    Article  Google Scholar 

  • Oschlies A, Garçon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269

    Article  Google Scholar 

  • Planas D, Agustí S, Duarte CM, Granata TC, Merino M (1999) Nitrate uptake and diffusive nitrate supply in the Central Atlantic. Limnol Oceanogr 44(1):116–126

    Article  Google Scholar 

  • Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observation of the subtropical mode water evolution from the Kuroshio extension system study. J Phys Oceanogr 36:457–473

    Article  Google Scholar 

  • Qiu B, Chen S, Hacker P (2007) Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J Phys Oceanogr 37:982–1000

    Article  Google Scholar 

  • Riser SC, Johnson KS (2008) Net production of oxygen in the subtropical ocean. Nature 451:323–325. doi:10.1038/nature06441

    Article  Google Scholar 

  • Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants-in-aid for Exploratory Research (no. 17651002) and for Scientific Research in Priority Areas, “Western Pacific Air-Sea Interaction Study (W-PASS)” from the Ministry of Education, Culture, Sports, Science and Technology; by the Japan Society for Promotion of Science (Grant-in-Aid for Scientific Research (C), no. 22540445); by the Agriculture, Forestry and Fisheries Research Council (AFFRC) for the study of “Population Outbreak of Marine Life”; by grants-in-aid for Creative Scientific Research (no. 17GS0203) from the Ministry of Education, Culture, Sports, Science, and Technology and for Scientific Research in Priority Areas “Comprehensive studies of global greenhouse gas cycles in the atmosphere, terrestrial biosphere and oceans”; and by the Inoue Foundation for Science. This study contributed to the Japan Argo project. The authors thank the captains, crew members, and scientists of the R/Vs Tansei-maru and Hakuho-maru of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Thanks are also given to members of the JAMSTEC Argo group and members of the Physical Oceanography Group at Tohoku University for their helpful discussions throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiho Sukigara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukigara, C., Suga, T., Saino, T. et al. Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific. J Oceanogr 67, 77–85 (2011). https://doi.org/10.1007/s10872-011-0008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0008-5

Keywords

Navigation