Skip to main content
Log in

The temporal trend of stratospheric carbonyl sulfide

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Using a database of spectra collected with an airborne infrared spectrometer between 1978 and 2005, the longest record of this type, we have searched for a temporal trend in the stratospheric OCS amount. The total column above 200 hPa, in latitudes from 30° to 60°N, shows a change of about 0.77 ± 0.80% per year relative to the 2010 value which is 1.34 × 1015 molecules cm−2; thus not a significant change. Observations are made from the base of the stratosphere and are uniquely suited to determining the stratospheric OCS abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bandy, A.R., Thornton, D.C., Scott, D.L., Lalevic, M., Lewin, E.E., Driedger III, A.R.: A time series for carbonyl sulfide in the Northern Hemisphere. J. Atmos. Chem. 14, 527–534 (1992)

    Article  Google Scholar 

  • Barkley, M.P., Palmer, P.I., Boone, C.D., Bernath, P.F., Suntharalingam, P.: Global distributions of carbonyl sulfide in the upper troposphere and stratosphere. Geophys. Res. Lett. 35, L14810 (2008). doi:10.1029/2008GL034270

    Article  Google Scholar 

  • Brasseur, G., Granier, C.: Mount Pinatubo aerosol, chlorofluorocarbons, and ozone depletion. Science 257, 1239–1242 (1992)

    Article  Google Scholar 

  • Chin, M., Davis, D.D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993–9005 (1995)

    Article  Google Scholar 

  • Coffey, M.T.: Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res. 101, 6767–6780 (1996)

    Article  Google Scholar 

  • Coffey, M.T., Mankin, W.G.: Observations of the loss of stratospheric NO2 following volcanic eruptions. Geophys. Res. Lett. 20, 2873–2876 (1993)

    Article  Google Scholar 

  • Connor, B.J., Parrish, A., Tsou, J.-J., McCormick, M.P.: Error analysis for the ground-based microwave ozone measurements during STOIC. J. Geophys. Res. 100(D5), 9283–9291 (1995). doi:10.1029/94JD00413

    Article  Google Scholar 

  • Crutzen, P.J.: The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–76 (1976)

    Article  Google Scholar 

  • Deshler, T., Anderson-Sprecher, R., Jäger, H., Barnes, J., Hofmann, D.J., Clemesha, B., Simonich, D., Osborn, M., Grainger, R.G., Godin-Beekmann, S.: Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004. J. Geophys. Res. 111, D01201 (2006). doi:10.1029/2005JD006089

    Article  Google Scholar 

  • Farmer, C.B., Norton, R.H.: A high resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space, vol I. The Sun. NASA Reference Publication 1224, (1989)

  • Granier, C., Brasseur, G.: Impact of heterogeneous chemistry on model predictions of ozone changes. J. Geophys. Res. 97, 18,015–18,033 (1992). doi:10.1029/92JD02021

    Google Scholar 

  • Hase, F., Hannigan, J.W., Coffey, M.T., Goldman, A., Höpfner, M., Jones, N.B., Rinsland, C.P., Wood, S.W.: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J. Quant. Spectr. Rad. Trans. 87(1), 25–52 (2004)

    Article  Google Scholar 

  • Hase, F., Demoulin, P., Sauval, A.J., Toon, G.C., Bernath, P.F., Goldman, A., Hannigan, J.W., Rinsland, C.P.: An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm−1. J. Quant. Spectr. Rad. Trans. 102, 450–463 (2006)

    Article  Google Scholar 

  • Hofmann, D.J.: Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248, 996–1000 (1990)

    Article  Google Scholar 

  • Hofmann, D.J., Rosen, J.M.: On the background stratospheric aerosols. J. Atmos. Sci. 38, 168–181 (1981)

    Article  Google Scholar 

  • Hofmann, D.J., Solomon, S.: Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J. Geophys. Res. 94, 5029–5041 (1989)

    Article  Google Scholar 

  • Hofmann, D., Barnes, J., O'Neill, M., Trudeau, M., Neely R.: Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado, Geophys. Res. Lett. 36, L15808 (2009). doi:10.1029/2009GL039008

  • Jäger, H.: Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen. J. Geophys. Res. 110, D08106 (2005). doi:10.1029/2004JD005506

    Article  Google Scholar 

  • Jäger, H., Wege, K.: Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions. J. Atmos. Chem. 10, 273–287 (1990)

    Article  Google Scholar 

  • Junge, C.E., Manson, J.E.: Stratospheric aerosol studies. J. Geophys. Res. 66, 2163–2182 (1961)

    Article  Google Scholar 

  • Maki, A.G., Wells, J.S.: Wavenumber calibration tables from heterodyne frequency measurements. NIST Special Publication 821, (1991)

  • Mankin, W. G.: Airborne Fourier transform spectroscopy of the upper atmosphere. Opt. Engr. 17, 39–43 (1978)

    Google Scholar 

  • Mankin, W.G., Coffey, M.T.: Airborne measurements of stratospheric constituents over Antarctica in the austral spring 1987: 1. Method and ozone observations. J. Geophys. Res. 94, 11,413–11,421 (1989)

    Article  Google Scholar 

  • Mankin, W.G., Coffey, M.T., Griffith, D.W.T., Drayson, S.R.: Spectroscopic measurement of carbonyl sulfide (OCS) in the stratosphere. Geophys. Res. Lett. 6, 853–856 (1979)

    Article  Google Scholar 

  • McCormick, M.P., Veiga, R.E.: SAGE II measurements of early Pinatubo aerosols. Geophys. Res. Lett. 19, 155–158 (1992)

    Article  Google Scholar 

  • McCormick, M.P., Thomason, L.W., Trepte, C.R.: Atmospheric effects of the Mt. Pinatubo eruption. Nature 373, 399–404 (1995)

    Article  Google Scholar 

  • Montzka, S.A., Calvert, P., Hall, B.D., Elkins, J.W., Conway, T.J., Tans, P.P., Sweeney, C.: On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. 112, D09302 (2007). doi:10.1029/2006JD007665

    Article  Google Scholar 

  • Osborn, M.T., DeCoursey, R.J., Trepte, C.R., Winker, D.M., Woods, D.C.: Evolution of the Pinatubo volcanic cloud over Hampton, Virginia. Geophys. Res. Lett. 22, 1101–1104 (1995)

    Article  Google Scholar 

  • Pitari, G., Mancini, E., Rizi, V., Shindell, D.T.: Impact of future climate and emission changes on stratospheric aerosols and ozone. J. Atmos. Sci. 59, 414–440 (2002)

    Article  Google Scholar 

  • Rinsland, C.P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D.H., Rudolph, J.: Ground-based infrared measurements of carbonyl sulfide total column abundances: Long term trends and variability. J. Geophys. Res. 97, 5995–6002 (1992). doi:10.1029/92JD00040

    Google Scholar 

  • Rinsland, C.P., Mahieu, E., Zander, R., Gunson, M.R., Salawitch, R.J., Chang, A.Y., Goldman, A., Abrams, M.C., Abbas, M.M., Newchurch, M.J., Irion, F.W.: Trends of OCS, HCN, SF6, CHClF2 (HCFC-22) in the lower stratosphere from 1985 and 1994 atmospheric trace molecule spectroscopy experiment measurements near 30°N latitude. Geophys. Res. Lett. 23, 2349–2352 (1996)

    Article  Google Scholar 

  • Rinsland, C., et al.: Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane. J. Geophys. Res. 103(D21), 28197–28217 (1998)

    Article  Google Scholar 

  • Rinsland, C.P., Chiou, L., Mahieu, E., Zander, R., Boone, C.D., Bernath, P.F.: Measurements of long-term changes in atmospheric OCS (carbonyl sulfide) from infrared solar observations. J. Quant. Spect. Rad. Trans. 109, 2679–2686 (2008)

    Article  Google Scholar 

  • Rothman, L.S., Gamache, R.R., Tipping, R.H., Rinsland, C.P., Smith, M.A.H., Benner, D.C., Malathy Devi, V., Flaud, J.-M., Camy-Peyret, C., Perrin, A., Goldman, A., Massie, S.T., Brown, L.R., Toth, R.A.: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spect. Rad. Trans. 48(5–6), 469–507 (1992)

    Article  Google Scholar 

  • Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.E., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Simeckova, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spect. Rad. Trans. 110, 533–572 (2009). doi:10.1016/j.jqsrt.2009.02.013

    Article  Google Scholar 

  • Solomon, S., Portmann, R.W., Garcia, R.R., Thomason, L.W., Poole, L.R., McCormick, M.P.: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996)

    Article  Google Scholar 

  • Thomason, L.W., Peter, T.: SPARC assessment of stratospheric aerosol properties, WCRP-124, WMO/TD-No. 1295, SPARC Report No. 4, February (2006)

  • Thomason, L., Kent, G., Trepte, C., Poole, L.: A comparison of the stratospheric aerosol background periods of 1979 and 1989–1991. J. Geophys. Res. 102(D3), 3611–3616 (1997)

    Article  Google Scholar 

  • Turco, R.P., Drdla, K., Tabazadeh, A., Hamill, P.: Heterogeneous chemistry of polar stratospheric clouds and volcanic aerosols. In: Chanin, M.-L. (ed.) The role of the stratosphere in global change, pp. 65–134. Springer-Verlag, Heidelberg (1993)

    Google Scholar 

  • Vernier, J.-P., Thomason, L.W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., Vargas, F.: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011). doi:10.1029/2011GL047563

    Article  Google Scholar 

  • Yue, G.K., McCormick, M.P., Chiou, E.W.: Stratospheric aerosol optical depth observed by the stratospheric aerosol and gas experiment II: Decay of the El Chichon and Ruiz volcanic perturbations. J. Geophys. Res. 96, 5209–5219 (1991)

    Article  Google Scholar 

  • Zander, R.: IR retrieval algorithms intercomparison for the NDSC. Paper presented at OSA Topical Meeting on Fourier Transform Spectroscopy: New Methods and Applications. Santa Fe, NM, February (1995)

  • Zander, R., Rinsland, C.P., Farmer, C.B., Namkung, J., Norton, R.H., Russell III, J.M.: Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra. J. Geophys. Res. 93, 1669–1678 (1988)

    Article  Google Scholar 

  • Zhao, J., Turco, R.P., Toon, O.B.: A model simulation of Pinatubo volcanic aerosols in the stratosphere. J. Geophys. Res. 100, 7315–7328 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the research aircraft facilities that provided the aircraft and flight operations to obtain the airborne data, particularly the NCAR Research Aviation Facility and the NASA Ames Medium Altitude Branch. This work was supported in part by the NASA Upper Atmosphere Research program and in part by the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank the reviewers for their very helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Coffey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, M.T., Hannigan, J.W. The temporal trend of stratospheric carbonyl sulfide. J Atmos Chem 67, 61–70 (2010). https://doi.org/10.1007/s10874-011-9203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-011-9203-4

Keywords

Navigation