Skip to main content
Log in

AIM2 Facilitates the Apoptotic DNA-induced Systemic Lupus Erythematosus via Arbitrating Macrophage Functional Maturation

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Lupus nephritis, a major cause of morbidity in patients with systemic lupus erythematosus (SLE), is generally thought to be induced by macrophage-mediated inflammation following deposition of various autoantibodies in kidneys. We previously reported that macrophage aberrant activation induced by activated lymphocyte-derived apoptotic DNA (apopDNA) have been found to play pathogenic roles in the immunodysregulation in lupus nephritis. However, DNA sensor(s) involved in apopDNA-induced macrophage activation and lupus nephritis remains largely undefined. Herein, we aimed to reveal the DNA sensor(s) involved in SLE disease.

Methods

Correlation between the level of absent in melanoma 2 (AIM2), a cytoplasmic DNA receptor in the inflammasome pathway, and the clinical severity of SLE disease were analyzed in SLE patients as well as in lupus mice. Activated macrophages induced by apopDNA were analyzed by real-time PCR and western blot for AIM2 expression. After silencing of AIM2 via siRNA-mediated knockdown in vitro and in vivo, macrophage activation, inflammatory response, and SLE syndrome were assessed.

Results

AIM2 expression was closely correlated with the severity of disease in SLE patients and in lupus mice. Importantly, AIM2 expression was significantly increased in apopDNA-induced macrophages and closely correlated with macrophage activation. Knockdown of AIM2 significantly blunted apopDNA-induced macrophage activation. Furthermore, blockade of AIM2 expression notably ameliorated SLE syndrome via impeding macrophage activation and dampening inflammatory response in apopDNA-induced lupus mice.

Conclusions

Our results implied that AIM2 might act as an important DNA sensor and a potential biomarker for apopDNA-induced macrophage functional maturation and SLE disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    Article  PubMed  CAS  Google Scholar 

  2. Triantafyllopoulou A, Franzke CW, Seshan SV, Perino G, Kalliolias GD, Ramanujam M, et al. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc Natl Acad Sci USA. 2010;107(7):3012–7.

    Article  PubMed  CAS  Google Scholar 

  3. Schiffer L, Bethunaickan R, Ramanujam M, Huang W, Schiffer M, Tao H, et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol. 2008;180(3):1938–47.

    PubMed  CAS  Google Scholar 

  4. Bethunaickan R, Berthier CC, Ramanujam M, Sahu R, Zhang W, Sun Y, et al. A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J Immunol. 2011;186(8):4994–5003.

    Article  PubMed  CAS  Google Scholar 

  5. Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, et al. Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int. 1996;49(3):761–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hill GS, Delahousse M, Nochy D, Remy P, Mignon F, Mery JP, et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 2001;59(1):304–16.

    Article  PubMed  CAS  Google Scholar 

  7. Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 2005;68(2):437–55.

    Article  PubMed  Google Scholar 

  8. Qiao B, Wu J, Chu YW, Wang Y, Wang DP, Wu HS, et al. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford). 2005;44(9):1108–14.

    Article  CAS  Google Scholar 

  9. Wen ZK, Xu W, Xu L, Cao QH, Wang Y, Chu YW, et al. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford). 2007;46(12):1796–803.

    Article  CAS  Google Scholar 

  10. Zhang W, Xu W, Xiong S. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol. 2010;184(11):6465–78.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang W, Xu W, Xiong S. Macrophage differentiation and polarization via phosphatidylinositol 3-Kinase/Akt-ERK signaling pathway conferred by serum amyloid P component. J Immunol. 2011;187(4):1764–77.

    Article  PubMed  CAS  Google Scholar 

  12. Evans CJ, Aguilera RJ. DNase II: genes, enzymes and function. Gene. 2003;322:1–15.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437(7059):754–8.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005;6(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med. 2005;202(10):1333–9.

    Article  PubMed  CAS  Google Scholar 

  16. Barbalat R, Ewald SE, Mouchess ML, Barton GM. Nucleic Acid recognition by the innate immune system. Annu Rev Immunol. 2011;29:185–214.

    Article  PubMed  CAS  Google Scholar 

  17. Hornung V, Latz E. Intracellular DNA recognition. Nat Rev Immunol. 2010;10(2):123–30.

    Article  PubMed  CAS  Google Scholar 

  18. Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol. 2011;187(11):6143–56.

    Article  PubMed  CAS  Google Scholar 

  19. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323(5917):1057–60.

    Article  PubMed  CAS  Google Scholar 

  21. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13.

    Article  PubMed  CAS  Google Scholar 

  22. Panchanathan R, Duan X, Arumugam M, Shen H, Liu H, Choubey D. Cell type and gender-dependent differential regulation of the p202 and Aim2 proteins: implications for the regulation of innate immune responses in SLE. Mol Immunol. 2011;49(1–2):273–80.

    Article  PubMed  CAS  Google Scholar 

  23. Choubey D. DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol. 2012;142(3):223–31.

    Article  PubMed  CAS  Google Scholar 

  24. Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105(4):353–64.

    Article  PubMed  CAS  Google Scholar 

  25. Ito T, Schaller M, Hogaboam CM, Standiford TJ, Sandor M, Lukacs NW, et al. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J Clin Invest. 2009;119(1):33–46.

    PubMed  CAS  Google Scholar 

  26. Zhang W, Cai Y, Xu W, Xiong S. C-reactive protein functions as a negative regulator of macrophage activation induced by apoptotic DNA. Protein Cell. 2011;2(8):672–9.

    Article  PubMed  CAS  Google Scholar 

  27. Xu J, Yun X, Jiang J, Wei Y, Wu Y, Zhang W, et al. Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma by reducing Notch1 cleavage. Hepatology. 2010;52(1):142–54.

    Article  PubMed  CAS  Google Scholar 

  28. Liu H, Xu J, Zhou L, Yun X, Chen L, Wang S, et al. Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Res. 2011;71:7547–57.

    Article  PubMed  CAS  Google Scholar 

  29. Xu J, Liu H, Chen L, Wang S, Zhou L, Yun X, et al. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology. 2012;143(1):199–212.

    Article  PubMed  CAS  Google Scholar 

  30. Chen M, Zhang W, Xu W, Zhang F, Xiong S. Blockade of TLR9 signaling in B cells impaired anti-dsDNA antibody production in mice induced by activated syngenic lymphocyte-derived DNA immunization. Mol Immunol. 2011;48(12–13):1532–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang W, Wu J, Qiao B, Xu W, Xiong S. Amelioration of lupus nephritis by serum amyloid p component gene therapy with distinct mechanisms varied from different stage of the disease. PLoS One. 2011;6(7):e22659.

    Article  PubMed  CAS  Google Scholar 

  32. Hale MB, Krutzik PO, Samra SS, Crane JM, Nolan GP. Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLoS One. 2009;4(8):e6756.

    Article  PubMed  Google Scholar 

  33. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179(4):1317–30.

    Article  PubMed  CAS  Google Scholar 

  34. Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med. 1998;188(2):387–92.

    Article  PubMed  CAS  Google Scholar 

  35. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358(9):929–39.

    Article  PubMed  CAS  Google Scholar 

  36. Papatriantafyllou M. Macrophages: support from the locals. Nat Rev Immunol. 2011;11(7):442.

    Article  PubMed  Google Scholar 

  37. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74.

    Article  PubMed  CAS  Google Scholar 

  38. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  PubMed  CAS  Google Scholar 

  39. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448(7152):501–5.

    Article  PubMed  CAS  Google Scholar 

  40. Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009;138(3):576–91.

    Article  PubMed  CAS  Google Scholar 

  41. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 2009;10(10):1065–72.

    Article  PubMed  CAS  Google Scholar 

  42. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.

    Article  PubMed  CAS  Google Scholar 

  43. Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol. 2010;11(6):487–94.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12(10):959–65.

    Article  PubMed  CAS  Google Scholar 

  45. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462(7269):99–103.

    Article  PubMed  CAS  Google Scholar 

  46. Keating SE, Baran M, Bowie AG. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 2011;32(12):574–81.

    Article  PubMed  CAS  Google Scholar 

  47. Kimkong I, Avihingsanon Y, Hirankarn N. Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus. 2009;18(12):1066–72.

    Article  PubMed  CAS  Google Scholar 

  48. Panchanathan R, Duan X, Shen H, Rathinam VA, Erickson LD, Fitzgerald KA, et al. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J Immunol. 2010;185(12):7385–93.

    Article  PubMed  CAS  Google Scholar 

  49. Panchanathan R, Shen H, Bupp MG, Gould KA, Choubey D. Female and male sex hormones differentially regulate expression of Ifi202, an interferon-inducible lupus susceptibility gene within the Nba2 interval. J Immunol. 2009;183(11):7031–8.

    Article  PubMed  CAS  Google Scholar 

  50. Panchanathan R, Shen H, Duan X, Rathinam VA, Erickson LD, Fitzgerald KA, et al. Aim2 deficiency in mice suppresses the expression of the inhibitory Fcgamma receptor (FcgammaRIIB) through the induction of the IFN-inducible p202, a lupus susceptibility protein. J Immunol. 2011;186(12):6762–70.

    Article  PubMed  CAS  Google Scholar 

  51. Jorgensen TN, Alfaro J, Enriquez HL, Jiang C, Loo WM, Atencio S, et al. Development of murine lupus involves the combined genetic contribution of the SLAM and FcgammaR intervals within the Nba2 autoimmune susceptibility locus. J Immunol. 2010;184(2):775–86.

    Article  PubMed  CAS  Google Scholar 

  52. Choubey D, Panchanathan R, Shen H, Duan X. Comment on “Development of murine lupus involves the combined genetic contribution of the SLAM and Fc gamma R intervals within the Nba2 autoimmune susceptibility locus”. J Immunol. 2010;184(8):4051–2. author reply 2.

    Article  PubMed  CAS  Google Scholar 

  53. Choubey D, Panchanathan R, Duan X, Liu H. Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res. 2011;31(12):893–906.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize for the inability to cite all related and important literature due to space limitations. We thank Prof Nan Shen (Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China) for SLE patient samples collection. This work was supported by grants of National Natural Science Foundation of China (30890141, 31100629, 31270863, 81273300), Major State Basic Research Development Program of China (2013CB530501), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1075), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),, Shanghai STC grant (10JC1401400), and Postdoctoral Science Foundation of China (2012T50374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Xiong.

Additional information

Weijuan Zhang and Yanxing Cai contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

ApopDNA but not Un-apopDNA or OVA immunization upregulates AIM2 expression. Six- to 8-week-old female BALB/c mice were immunized with PBS, Un-apopDNA, apopDNA, or OVA (n = 10). (A and B) Real-time PCR analysis of AIM2 relative to GAPDH for PBMCs (A) or for CD11b+/F4/80high renal macrophages purified from the immunized mice (B). (C) Western blot analysis of AIM2 and GAPDH for aforementioned renal macrophages. (JPEG 18 kb)

High resolution image (TIFF 248 kb)

Supplemental Figure 2

ApopDNA is able to induce macrophage activation. (A) Macrophages were treated with Polymyxin B (Sigma) for 15 min before apopDNA transfection. Cytokine levels in the culture supernatants of macrophages were determined by ELISA assay. (B) ApopDNA was treated with DNase (Ambion) for 30 min at room temperature and then was transfected into macrophages. Cytokine levels in the culture supernatants of macrophages were determined by ELISA assay. (JPEG 42 kb)

High resolution image (TIFF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Cai, Y., Xu, W. et al. AIM2 Facilitates the Apoptotic DNA-induced Systemic Lupus Erythematosus via Arbitrating Macrophage Functional Maturation. J Clin Immunol 33, 925–937 (2013). https://doi.org/10.1007/s10875-013-9881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-013-9881-6

Keywords

Navigation