Skip to main content

Advertisement

Log in

Cancer Tendency in a Patient with ZNF341 Deficiency

  • Letter to Editor
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11(1):39–46. https://doi.org/10.1016/S0959-440X(00)00167-6.

    Article  CAS  PubMed  Google Scholar 

  2. Gibson TJ, Postma JP, Brown RS, Argos P. A model for the tertiary structure of the 28 residue DNA-binding motif (‘zinc finger’) common to many eukaryotic transcriptional regulatory proteins. Protein Eng. 1988;2(3):209–18.

    Article  CAS  Google Scholar 

  3. Frey-Jakobs S, Hartberger JM, Fliegauf M, Bossen C, Wehmeyer ML, Neubauer JC, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol. 2018;3(24):eaat4941. https://doi.org/10.1126/sciimmunol.aat4941.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Béziat V, Li J, Lin JX, Ma CS, Li P, Bousfiha A, et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol. 2018;3(24):eaat4956.

    Article  Google Scholar 

  5. McKenna DJ, McKeown SR, McKelvey-Martin VJ. Potential use of the comet assay in the clinical management of cancer. Mutagenesis. 2008;23(3):183–90.

    Article  CAS  Google Scholar 

  6. Jerez A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120(15):3048–57. https://doi.org/10.1182/blood-2012-06-435297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905–13. https://doi.org/10.1056/NEJMoa1114885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardee J, Ouyang Z, Zhang Y, Kundaje A, Lacroute P, Snyder M. STAT3 targets suggest mechanisms of aggressive tumorigenesis in diffuse large B-cell lymphoma. G3 (Bethesda). 2013;3(12):2173–85. https://doi.org/10.1534/g3.113.007674.

    Article  CAS  Google Scholar 

  9. Yong PF, Freeman AF, Engelhardt KR, Holland S, Puck JM, Grimbacher B. An update on the hyper-IgE syndromes. Arthritis Res Ther. 2012;14(6):228. https://doi.org/10.1186/ar4069.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Travis LB, Rabkin CS, Brown LM, Allan JM, Alter BP, Ambrosone CB, et al. Cancer survivorship--genetic susceptibility and second primary cancers: research strategies and recommendations. J Natl Cancer Inst. 2006;98(1):15–25.

    Article  Google Scholar 

  11. Iglesias ML, Schmidt A, Ghuzlan AA, Lacroix L, Vathaire F, Chevillard S, et al. Radiation exposure and thyroid cancer: a review. Arch Endocrinol Metab. 2017;61(2):180–7.

    Article  Google Scholar 

  12. Gunasekarana V, Raj GV, Chand P. A comprehensive review on clinical applications of comet assay.J Clin Diagn Res. 2015;9(3):GE01–5.

  13. Schmeiser HH, Muehlbauer KR, Mier W, Baranski AC, Neels O, Dimitrakopoulou-Strauss A, et al. DNA damage in human whole blood caused by radiopharmaceuticals evaluated by the comet assay. Mutagenesis. 2019;3:239–44.

    Article  Google Scholar 

  14. Barry SP, Townsend PA, Knight RA, Scarabelli TM, Latchman DS, Anastasis SA. STAT3 modulates the DNA damage response pathway. Int J Exp Pathol. 2010;91(6):506–14.

    Article  CAS  Google Scholar 

  15. Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141(3):1028–35.

    Article  Google Scholar 

Download references

Funding

BG receives support through the Deutsche Forschungsgemeinschaft (DFG) SFB1160/2_B5, under Germany’s Excellence Strategy (CIBSS – EXC-2189 – Project ID 390939984, and RESIST – EXC 2155 – Project ID 39087428); through the E-rare program of the EU, managed by the DFG, grant code GR1617/14-1/iPAD; and through the “Netzwerke Seltener Erkrankungen” of the German Ministry of Education and Research (BMBF), grant code GAIN_ 01GM1910A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Sebnem Kilic.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cekic, S., Hartberger, J.M., Frey-Jakobs, S. et al. Cancer Tendency in a Patient with ZNF341 Deficiency. J Clin Immunol 40, 534–538 (2020). https://doi.org/10.1007/s10875-020-00756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00756-z

Navigation