Skip to main content

Advertisement

Log in

Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Germline heterozygous mutations of GATA2 underlie a variety of hematological and clinical phenotypes. The genetic, immunological, and clinical features of GATA2-deficient patients with mycobacterial diseases in the familial context remain largely unknown.

Methods

We enrolled 15 GATA2 index cases referred for mycobacterial disease. We describe their genetic and clinical features including their relatives.

Results

We identified 12 heterozygous GATA2 mutations, two of which had not been reported. Eight of these mutations were loss-of-function, and four were hypomorphic. None was dominant-negative in vitro, and the GATA2 locus was found to be subject to purifying selection, strongly suggesting a mechanism of haploinsufficiency. Three relatives of index cases had mycobacterial disease and were also heterozygous, resulting in 18 patients in total. Mycobacterial infection was the first clinical manifestation in 11 patients, at a mean age of 22.5 years (range: 12 to 42 years). Most patients also suffered from other infections, monocytopenia, or myelodysplasia. Strikingly, the clinical penetrance was incomplete (32.9% by age 40 years), as 16 heterozygous relatives aged between 6 and 78 years, including 4 older than 60 years, were completely asymptomatic.

Conclusion

Clinical penetrance for mycobacterial disease was found to be similar to other GATA2 deficiency-related manifestations. These observations suggest that other mechanisms contribute to the phenotypic expression of GATA2 deficiency. A diagnosis of autosomal dominant GATA2 deficiency should be considered in patients with mycobacterial infections and/or other GATA2 deficiency-related phenotypes at any age in life. Moreover, all direct relatives should be genotyped at the GATA2 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol. 2015;169(2):173–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54(2):81–6.

    PubMed  PubMed Central  Google Scholar 

  3. Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyde RK, Liu PP. GATA2 mutations lead to MDS and AML. Nat Genet. 2011;43(10):926–7.

    CAS  PubMed  Google Scholar 

  6. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929–31.

    CAS  PubMed  Google Scholar 

  8. Johnson KD, Hsu AP, Ryu MJ, Wang J, Gao X, Boyer ME, et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J Clin Invest. 2012;122(10):3692–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L, Hickstein DD, et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood. 2013;121(19):3830–7 S1-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cortes-Lavaud X, Landecho MF, Maicas M, Urquiza L, Merino J, Moreno-Miralles I, et al. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation. J Immunol. 2015;194(5):2190–8.

    CAS  PubMed  Google Scholar 

  11. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, et al. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest. 2015;125(8):2979–94.

    PubMed  PubMed Central  Google Scholar 

  12. Fujiwara T, Fukuhara N, Funayama R, Nariai N, Kamata M, Nagashima T, et al. Identification of acquired mutations by whole-genome sequencing in GATA-2 deficiency evolving into myelodysplasia and acute leukemia. Ann Hematol. 2014;93(9):1515–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hahn CN, Brautigan PJ, Chong CE, Janssan A, Venugopal P, Lee Y, et al. Characterisation of a compound in-cis GATA2 germline mutation in a pedigree presenting with myelodysplastic syndrome/acute myeloid leukemia with concurrent thrombocytopenia. Leukemia. 2015;29(8):1795–7.

    CAS  PubMed  Google Scholar 

  14. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B, et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012;120(2):395–403.

    CAS  PubMed  Google Scholar 

  15. Chong CE, Venugopal P, Stokes PH, Lee YK, Brautigan PJ, Yeung DTO, et al. Differential effects on gene transcription and hematopoietic differentiation correlate with GATA2 mutant disease phenotypes. Leukemia. 2017;32(1):194–202.

    PubMed  PubMed Central  Google Scholar 

  16. Niimi K, Kiyoi H, Ishikawa Y, Hayakawa F, Kurahashi S, Kihara R, et al. GATA2 zinc finger 2 mutation found in acute myeloid leukemia impairs myeloid differentiation. Leuk Res Rep. 2013;2(1):21–5.

    PubMed  PubMed Central  Google Scholar 

  17. Ping N, Sun A, Song Y, Wang Q, Yin J, Cheng W, et al. Exome sequencing identifies highly recurrent somatic GATA2 and CEBPA mutations in acute erythroid leukemia. Leukemia. 2017;31(1):195–202.

    CAS  PubMed  Google Scholar 

  18. Sologuren I, Martinez-Saavedra MT, Sole-Violan J, de Borges de Oliveira E Jr, Betancor E, Casas I, et al. Lethal influenza in two related adults with inherited GATA2 deficiency. J Clin Immunol. 2018;38(4):513–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Camargo JF, Lobo SA, Hsu AP, Zerbe CS, Wormser GP, Holland SM. MonoMAC syndrome in a patient with a GATA2 mutation: case report and review of the literature. Clin Infect Dis. 2013;57(5):697–9.

    PubMed  PubMed Central  Google Scholar 

  20. Koegel AK, Hofmann I, Moffitt K, Degar B, Duncan C, Tubman VN. Acute lymphoblastic leukemia in a patient with MonoMAC syndrome/GATA2 haploinsufficiency. Pediatr Blood Cancer. 2016;63(10):1844–7.

    CAS  PubMed  Google Scholar 

  21. Pasquet M, Bellanne-Chantelot C, Tavitian S, Prade N, Beaupain B, Larochelle O, et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood. 2012;121(5):822–9.

    PubMed  Google Scholar 

  22. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fasan A, Eder C, Haferlach C, Grossmann V, Kohlmann A, Dicker F, et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia. 2013;27(2):482–5.

    CAS  PubMed  Google Scholar 

  24. Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, Cuellar-Rodriguez J, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015;125(1):56–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121(14):2669–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, McGovern N, et al. The evolution of cellular deficiency in GATA2 mutation. Blood. 2014;123(6):863–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wlodarski MW, Hirabayashi S, Pastor V, Stary J, Hasle H, Masetti R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97 quiz 518.

    CAS  PubMed  Google Scholar 

  30. Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM. Heterogeneity of GATA2-related myeloid neoplasms. Int J Hematol. 2017;106(2):175–82.

    CAS  PubMed  Google Scholar 

  31. Brambila-Tapia AJL, Garcia-Ortiz JE, Brouillard P, Nguyen HL, Vikkula M, Rios-Gonzalez BE, et al. GATA2 null mutation associated with incomplete penetrance in a family with Emberger syndrome. Hematology. 2017;22(8):467–71.

    CAS  PubMed  Google Scholar 

  32. Holland SM, Eisenstein EM, Kuhns DB, Turner ML, Fleisher TA, Strober W, et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med. 1994;330(19):1348–55.

    CAS  PubMed  Google Scholar 

  33. Mutsaers PG, van de Loosdrecht AA, Tawana K, Bodor C, Fitzgibbon J, Menko FH. Highly variable clinical manifestations in a large family with a novel GATA2 mutation. Leukemia. 2013;27(11):2247–8.

    CAS  PubMed  Google Scholar 

  34. Vila A, Dapas JI, Rivero CV, Bocanegra F, Furnari RF, Hsu AP, et al. Multiple opportunistic infections in a woman with GATA2 mutation. Int J Infect Dis. 2017;54:89–91.

    PubMed  Google Scholar 

  35. Ishida H, Imai K, Honma K, Tamura S, Imamura T, Ito M, et al. GATA-2 anomaly and clinical phenotype of a sporadic case of lymphedema, dendritic cell, monocyte, B- and NK-cell (DCML) deficiency, and myelodysplasia. Eur J Pediatr. 2012;171(8):1273–6.

    CAS  PubMed  Google Scholar 

  36. Donadieu J, Lamant M, Fieschi C, Sicre de Fontbrune F, Caye A, Ouachee M, et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica. 2018;103(8):1278–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mishra SS, Williams JF, Paterson BG, George A. GATA2 deficiency in a young man with lymphoedema. Br J Haematol. 2020;9:142. https://doi.org/10.1111/bjh.16941.

    Article  Google Scholar 

  38. Eguchi K, Ishimura M, Sonoda M, Ono H, Shiraishi A, Kanno S, et al. Nontuberculous mycobacteria-associated hemophagocytic lymphohistiocytosis in MonoMAC syndrome. Pediatr Blood Cancer. 2018;65(7):e27017.

    PubMed  Google Scholar 

  39. Egenlauf B, Schuhmann M, Giese T, Junghanss T, Stojkovic M, Tintelnot K, et al. Disseminated mycosis by Arthrocladium fulminans jeopardizing a patient with GATA2 deficiency. Respiration. 2019;97(5):472–5.

    CAS  PubMed  Google Scholar 

  40. Bogaert DJ, Laureys G, Naesens L, Mazure D, De Bruyne M, Hsu AP, et al. GATA2 deficiency and haematopoietic stem cell transplantation: challenges for the clinical practitioner. Br J Haematol. 2020;188(5):768–73.

    PubMed  Google Scholar 

  41. Abou Dalle I, Bannon SA, Patel KP, Routbort MJ, Cortes JE, Ferrajoli A, et al. Germline genetic predisposition to myeloid neoplasia from GATA2 gene mutations: lessons learned from two cases. JCO Precis Oncol. 2019;3: PO.18.00301.

  42. Simonis A, Fux M, Nair G, Mueller NJ, Haralambieva E, Pabst T, et al. Allogeneic hematopoietic cell transplantation in patients with GATA2 deficiency-a case report and comprehensive review of the literature. Ann Hematol. 2018;97(10):1961–73.

    CAS  PubMed  Google Scholar 

  43. Mendes-de-Almeida DP, Andrade FG, Borges G, Dos Santos-Bueno FV, Vieira IF, da Rocha L, et al. GATA2 mutation in long stand Mycobacterium kansasii infection, myelodysplasia and MonoMAC syndrome: a case-report. BMC Med Genet. 2019;20(1):64.

    PubMed  PubMed Central  Google Scholar 

  44. Mardahl M, Jorgensen SE, Schneider A, Raaschou-Jensen K, Holm M, Veirum J, et al. Impaired immune responses to herpesviruses and microbial ligands in patients with MonoMAC. Br J Haematol. 2019;186(3):471–6.

    PubMed  Google Scholar 

  45. Fakhri B, Cashen AF, Duncavage EJ, Watkins MP, Wartman LD, Bartlett NL. Fifty shades of GATA2 mutation: a case of plasmablastic lymphoma, nontuberculous mycobacterial infection, and myelodysplastic syndrome. Clin Lymphoma Myeloma Leuk. 2019;19(9):e532–e5.

    PubMed  Google Scholar 

  46. Monif M, Huq A, Chee L, Kilpatrick T. MonoMac syndrome with associated neurological deficits and longitudinally extensive cord lesion. BMJ Case Rep. 2018;2018. bcr: bcr2017222872.

  47. Lovell JP, Zerbe CS, Olivier KN, Claypool RJ, Frein C, Anderson VL, et al. Mediastinal and disseminated Mycobacterium kansasii disease in GATA2 deficiency. Ann Am Thorac Soc. 2016;13(12):2169–73.

    PubMed  PubMed Central  Google Scholar 

  48. Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Griese M, Zarbock R, Costabel U, Hildebrandt J, Theegarten D, Albert M, et al. GATA2 deficiency in children and adults with severe pulmonary alveolar proteinosis and hematologic disorders. BMC Pulm Med. 2015;15:87.

    PubMed  PubMed Central  Google Scholar 

  50. West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica. 2013;99(2):276–81.

    PubMed  Google Scholar 

  51. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

    CAS  PubMed  Google Scholar 

  52. Blanc P, Dutronc H, Peuchant O, Dauchy FA, Cazanave C, Neau D, et al. Nontuberculous mycobacterial infections in a French hospital: a 12-year retrospective study. PLoS One. 2016;11(12):e0168290.

    PubMed  PubMed Central  Google Scholar 

  53. Graham SM, Ahmed T, Amanullah F, Browning R, Cardenas V, Casenghi M, et al. Evaluation of tuberculosis diagnostics in children: 1. Proposed clinical case definitions for classification of intrathoracic tuberculosis disease. Consensus from an expert panel. J Infect Dis. 2012;205(Suppl 2):S199–208.

    PubMed  PubMed Central  Google Scholar 

  54. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2017;64(2):111–5.

    PubMed  PubMed Central  Google Scholar 

  55. Ho CK, Strauss JF 3rd. Activation of the control reporter plasmids pRL-TK and pRL-SV40 by multiple GATA transcription factors can lead to aberrant normalization of transfection efficiency. BMC Biotechnol. 2004;4:10.

    PubMed  PubMed Central  Google Scholar 

  56. de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, et al. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89(6):381–402.

    Google Scholar 

  57. Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A, Picard C, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore). 2013;92(2):109–22.

    CAS  Google Scholar 

  58. Eilertson KE, Booth JG, Bustamante CD. SnIPRE: selection inference using a Poisson random effects model. PLoS Comput Biol. 2012;8(12):e1002806.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9(8):e1003709.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jobim M, Lima Abreu E, Bustamante J, Oleaga C, Garcia TS, Jobim L. Sindromes MonoMAC e Emberger em pacientes com mutaçao no gene GATA2. Arquivos de Asma, Alergia en Imunologia. 2019;3(1):89–93.

    Google Scholar 

  62. Overbeek MJ, van de Loosdrecht AA, Vonk-Noordegraaf A. Granulomatous lung disease in a patient with a family history of hematological disorders. Sarcoidosis Vasc Diffuse Lung Dis. 2015;31(4):350–3.

    CAS  PubMed  Google Scholar 

  63. Tsuzuki S, Towatari M, Saito H, Enver T. Potentiation of GATA-2 activity through interactions with the promyelocytic leukemia protein (PML) and the t(15;17)-generated PML-retinoic acid receptor alpha oncoprotein. Mol Cell Biol. 2000;20(17):6276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol. 2013;13(4):280–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rapaport F, Boisson B, Gregor A, Beziat V, Boisson-Dupuis S, Bustamante J, et al. Negative selection on human genes causing severe inborn errors depends on disease outcome and both the mode and mechanism of inheritance. bioRxiv. 2020;https://doi.org/10.1101/2020.02.07.938894.

  66. Bolze A, Mahlaoui N, Byun M, Turner B, Trede N, Ellis SR, et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science. 2013;340(6135):976–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rieux-Laucat F, Casanova JL. Immunology. Autoimmunity by haploinsufficiency. Science. 2014;345(6204):1560–1.

    CAS  PubMed  Google Scholar 

  69. Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M. Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells. 2005;10(7):693–704.

    CAS  PubMed  Google Scholar 

  70. Pan X, Minegishi N, Harigae H, Yamagiwa H, Minegishi M, Akine Y, et al. Identification of human GATA-2 gene distal IS exon and its expression in hematopoietic stem cell fractions. J Biochem. 2000;127(1):105–12.

    CAS  PubMed  Google Scholar 

  71. Schlums H, Jung M, Han H, Theorell J, Bigley V, Chiang SC, et al. Adaptive NK cells can persist in patients with GATA2 mutation depleted of stem and progenitor cells. Blood. 2017;129(14):1927–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Al Seraihi AF, Rio-Machin A, Tawana K, Bodor C, Wang J, Nagano A, et al. GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia. 2018;32(11):2502–7.

    PubMed  PubMed Central  Google Scholar 

  73. Poyhonen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-threatening infections due to live-attenuated vaccines: early manifestations of inborn errors of immunity. J Clin Immunol. 2019;39(4):376–90.

    PubMed  PubMed Central  Google Scholar 

  74. Bodor C, Renneville A, Smith M, Charazac A, Iqbal S, Etancelin P, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97(6):890–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Svobodova T, Mejstrikova E, Salzer U, Sukova M, Hubacek P, Matej R, et al. Diffuse parenchymal lung disease as first clinical manifestation of GATA-2 deficiency in childhood. BMC Pulm Med. 2015;15:8.

    PubMed  PubMed Central  Google Scholar 

  76. Mojica AM, Elizalde A. GATA2 deficiency in a pediatric patient. J Allergy Clin Immunol Pract. 2019;7(6):2021–2.

    PubMed  Google Scholar 

  77. Fertitta L, Fontbrune FS, Battistella M, De Masson A, Bergeron A, Ranta D, et al. Folliculotropic mycosis fungoides associated with GATA2 deficiency: a new skin manifestation. Br J Dermatol. 2018;179(6):1420–1.

    CAS  PubMed  Google Scholar 

  78. Catto LFB, Borges G, Pinto AL, Cle DV, Chahud F, Santana BA, et al. Somatic genetic rescue in hematopoietic cells in GATA2 deficiency. Blood. 2020;136(8):1002–5.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and their families, whose cooperation was essential for the collection of the data used in this study. We thank all the members of the Laboratory of Human Genetics of Infectious Diseases for the helpful discussions and Christine Rivalain, Cécile Patissier, Dominick Papandrea, Dana Liu, and Yelena Nemirovskaya for their assistance. We would also like to thank Annarita Miccio for providing us with the sequences for the GATA2 and GAPDH qPCR primers and Clement KM Ho and Jerome F Strauss for providing us with the modified pRL-SV40-d238 Renilla.

Funding

The Laboratory of Human Genetics of Infectious Diseases is supported in part by institutional grants from INSERM, University of Paris, The Rockefeller University and the St. Giles Foundation, the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) (R37AI095983), and grants from the French National Research Agency (ANR) under the “Investments for the future” program (ANR-10-IAHU-01) and IFNGPHOX (ANR13-ISV3-0001-01 for JB and ACN), GENMSMD (ANR-16-CE17-0005-01 for JB) grants, ECOS-NORD (C19S01-63407 for JB and JFR), and SRC2017 (for JB). CO-Q is supported by ANR-HGDIFD (ANR-14-CE15-006-01). AG was supported by the ANR-IFNGPHOX (ANR13-ISV3-0001-01), GENMSMD (ANR-16-CE17-0005-01), and the Imagine Institute. AC-N and EBO-J are supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grants 2012/11757-2, 2010/51814-0, and 2012/51094-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ grant 303809/2010-8). MMG and RC are supported by Instituto de Salud Carlos III, grants PI11/01086 and PI14/00405, co-financed by the European Regional Development Fund (ERDF). JFR and AAA are supported by Colombia-France (ECOS-NORD/COLCIENCIAS/MEN/ICETEX; 619-2013, Diana García de Olarte foundation PID and Colciencias grant 713-2016 #111574455633). JR was supported by “Poste d’accueil” INSERM and Imagine Institute.

Author information

Authors and Affiliations

Authors

Contributions

CO-Q, EBO-J, CD, GV, AG, SM, CL, SMS, KG, and RM-B carried out the experiments. FR and LA performed the purifying selection studies. AC performed the penetrance calculations. JR, LB, NF-H, DBL, ASB, CT, EL, AAA, AC, CBC, TL, ALN, LLD, JR, VCM, LM, MR, MM-V, BG, RC, MGV, GL-H, LB-R, NHSM, POFR, AP, KAR, NRA, RPD, AC-N, FM, CR-G, TW, JFR, MJ, SB-D, EJ, CF, JD, MP, JV, FOA, MM-G, RAC, and LFJ were responsible for the clinical and biological evaluation. JB designed the study and contributed intellectually to the process. CO-Q, JB, and J-LC wrote the manuscript. All authors commented on and discussed the paper.

Corresponding author

Correspondence to Jacinta Bustamante.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

Informed consent for participation in this study was obtained in accordance with local regulations, with approval from the IRB. The experiments described here were performed in Mexico and France, in accordance with local regulations.

Informed Consent

Written informed consent was obtained from the guardians of the pediatric patients or directly from adult patients.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleaga-Quintas, C., de Oliveira-Júnior, E.B., Rosain, J. et al. Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance. J Clin Immunol 41, 639–657 (2021). https://doi.org/10.1007/s10875-020-00930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00930-3

Keywords

Navigation