Skip to main content

Advertisement

Log in

Polysorbate 80 Coated Gold Nanoparticle as a Drug Carrier for Brain Targeting in Zebrafish Model

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The development of biocompatible and promising drug delivery system is needed to enhance drug carrier to cross the blood–brain barrier to treat neurodegenerative diseases. The aim of the present study is to address colloidal gold nanoparticle functionalized with polysorbate 80 and Poly Ethylene Glycol, capabilities to overcome the blood–brain barrier for diagnostics and treatment of Alzheimer’s disease. The size of the gold nanoparticles ranges between 70 and 90 nm with monodispersity. The gold nanoparticle conjugated with Donepezil (GNPD) was confirmed and increased acetylcholinesterase inhibition activity of 30–38% was observed in the zebrafish brain. GNPD exhibited increased retention of gold nanoparticle in the brain with an increased particle concentration of 52% in day 1 and 21.74% on day 15. Behavioral analysis of colloidal gold nanoparticle treated zebrafish showed freezing and tremor swim pattern, while the GNPD treated zebrafish acquiesce with untreated zebrafish. Histological sections of colloidal gold nanoparticle treated zebrafish brain showed focal aggregation of cells in pia matter, while GNPD remained similar to the native zebrafish brain section. Thus, a possible biocompatible nanocarrier that can cross the blood–brain barrier and deliver the drug in the brain has been synthesized and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CIL:

Central nucleus of inferior lobe

DIL:

Diffuse nucleus of inferior lobe

GNP:

Gold nanoparticles

GNPD:

Gold nanoparticles with donepezil

PGZ:

Periventricular Gray zone

TLa:

Lateral torus

References

  1. G. Paciotti, D. Kingston, and L. Tamarkin (2006). Drug. Dev. Res.. https://doi.org/10.1002/ddr.20066.

    Article  Google Scholar 

  2. M. Edmundson, M. Capeness, and L. Horsfall (2014). New Biotechnol.. https://doi.org/10.1016/j.nbt.2014.03.004.

    Article  Google Scholar 

  3. X. Wang, G. Tao, and Y. Meng (2009). Microchim. Acta. https://doi.org/10.1007/s00604-009-0225-4.

    Article  Google Scholar 

  4. T. Cui, J. Liang, H. Chen, et al. (2017). ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.6b16669.

    Article  PubMed  PubMed Central  Google Scholar 

  5. J. Qian, S. Ruan, X. Cao, et al. (2014). J. Colloid Interface Sci.. https://doi.org/10.1016/j.jcis.2014.08.059.

    Article  PubMed  Google Scholar 

  6. J. Kreuter, V. Petrov, D. Kharkevich, and R. Alyautdin (1997). J. Control. Release. https://doi.org/10.1016/s0168-3659(97)00061-8.

    Article  Google Scholar 

  7. S. Wohlfart, S. Gelperina, and J. Kreuter (2012). J. Control. Release. https://doi.org/10.1016/j.jconrel.2011.08.017.

    Article  PubMed  Google Scholar 

  8. L. Hebert, P. Scherr, J. Bienias, D. Bennett, and D. Evans (2003). Arch. Neurol.. https://doi.org/10.1001/archneur.60.8.1119.

    Article  PubMed  Google Scholar 

  9. M. Colovic, D. Krstic, T. Lazarevic-Pasti, A. Bondzic, and V. Vasic (2013). Curr. Neuropharmacol.. https://doi.org/10.2174/1570159x11311030006.

    Article  PubMed  PubMed Central  Google Scholar 

  10. H. Sugimoto, H. Ogura, Y. Arai, Y. Iimura, and Y. Yamanishi (2002). The. Jpn. J. Pharmacol.. https://doi.org/10.1254/jjp.89.7.

    Article  PubMed  Google Scholar 

  11. P. J. Tiseo, K. Foley, and L. T. Friedhoff (2002). Br. J. Clin. Pharmacol.. https://doi.org/10.1046/j.1365-2125.1998.0460s1056.x.

    Article  Google Scholar 

  12. B. Davis (2012). Alzheimer’s Dement.. https://doi.org/10.1016/j.jalz.2012.05.301.

    Article  Google Scholar 

  13. K. Dooley, A. Davidson, and L. Zon (2005). Dev. Biol.. https://doi.org/10.1016/j.ydbio.2004.09.004.

    Article  PubMed  Google Scholar 

  14. B. Bhushan, S. Nandhagopal, R. Kannan, and P. Gopinath (2016). ChemistrySelect. https://doi.org/10.1002/slct.201600736.

    Article  Google Scholar 

  15. A. Verkerk and C. Remme (2012). Front. Physiol.. https://doi.org/10.3389/fphys.2012.00255.

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. Patibandla, Y. Zhang, A. Tohari, et al. (2018). J. Appl. Toxicol.. https://doi.org/10.1002/jat.3628.

    Article  PubMed  Google Scholar 

  17. B. Geffroy, C. Ladhar, S. Cambier, M. Treguer-Delapierre, D. Brèthes, and J. Bourdineaud (2011). Nanotoxicology. https://doi.org/10.3109/17435390.2011.562328.

    Article  PubMed  Google Scholar 

  18. R. Griffitt, K. Hyndman, N. Denslow, and D. Barber (2008). Toxicol. Sci.. https://doi.org/10.1093/toxsci/kfn256.

    Article  PubMed  Google Scholar 

  19. R. Griffitt, R. Weil, K. Hyndman, et al. (2007). Environ. Sci. Technol.. https://doi.org/10.1021/es071235e.

    Article  PubMed  Google Scholar 

  20. J. Zhou, J. Ralston, R. Sedev, and D. Beattie (2009). J. Colloid Interface Sci.. https://doi.org/10.1016/j.jcis.2008.12.002.

    Article  PubMed  Google Scholar 

  21. S. Kalaiarasi, P. Arjun, S. Nandhagopal, et al. (2016). J. Appl. Biomed.. https://doi.org/10.1016/j.jab.2016.01.004.

    Article  Google Scholar 

  22. C. Collymore, S. Rasmussen, and R. Tolwani (2013). J. Vis. Exp.. https://doi.org/10.3791/50691.

    Article  PubMed  PubMed Central  Google Scholar 

  23. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/20745761.

  24. R. Rajesh Kannan and S. Prakash Vincent (2012). Ann. Neurosci.. https://doi.org/10.5214/ans.0972.7531.180403.

    Article  Google Scholar 

  25. S. Sangabathuni, R. Murthy, P. Chaudhary, B. Subramani, S. Toraskar, and R. Kikkeri (2017). Sci. Rep.. https://doi.org/10.1038/s41598-017-03350-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. Menke, J. Spitsbergen, A. Wolterbeek, and R. Woutersen (2011). Toxicol. Pathol.. https://doi.org/10.1177/0192623311409597.

    Article  PubMed  Google Scholar 

  27. I. Hussain, S. Graham, Z. Wang, et al. (2005). J. Am. Chem. Soc.. https://doi.org/10.1021/ja055321v.

    Article  PubMed  Google Scholar 

  28. V. Senichev and V. Tereshatov, Simple Solvent Characteristics. Handbook of Solvents, (2014), pp. 117–149. https://doi.org/10.1016/b978-1-895198-64-5.50006-4.

  29. J. Cheng, B. Teply, I. Sherifi, et al. (2007). Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.09.047.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, and X. Jiang (2010). J. Am. Chem. Soc.. https://doi.org/10.1021/ja1028843.

    Article  PubMed  PubMed Central  Google Scholar 

  31. W. Sun, C. Xie, H. Wang, and Y. Hu (2004). Biomaterials 25, (15), 3065–3071. https://doi.org/10.1016/j.biomaterials.2003.09.087.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Chen, Y. Hung, I. Liau, and G. Huang (2009). Nanoscale Res. Lett.. https://doi.org/10.1007/s11671-009-9334-6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Huo, Y. Gao, Y. Wang, et al. (2015). J. Colloid Interface Sci.. https://doi.org/10.1016/j.jcis.2015.01.043.

    Article  PubMed  Google Scholar 

  34. G. Borchard, K. Audus, F. Shi, and J. Kreuter (1994). Int. J. Pharm.. https://doi.org/10.1016/0378-5173(94)90372-7.

    Article  Google Scholar 

  35. B. Chithrani, A. Ghazani, and W. Chan (2006). Nano Lett.. https://doi.org/10.1021/nl052396o.

    Article  PubMed  Google Scholar 

  36. T. Kosasa, Y. Kuriya, K. Matsui, and Y. Yamanishi (1999). Eur. J. Pharmacol.. https://doi.org/10.1016/s0014-2999(99)00741-4.

    Article  PubMed  Google Scholar 

  37. C. Park, S. Kim, W. Choi, et al. (1996). Planta Med.. https://doi.org/10.1055/s-2006-957926.

    Article  PubMed  Google Scholar 

  38. A. Dedeh, A. Ciutat, M. Treguer-Delapierre, and J. Bourdineaud (2014). Nanotoxicology. https://doi.org/10.3109/17435390.2014.889238.

    Article  PubMed  Google Scholar 

  39. N. Orieux, S. Cambier, P. Gonzalez, et al. (2011). Ecotoxicol. Environ.. https://doi.org/10.1016/j.ecoenv.2011.01.008.

    Article  Google Scholar 

  40. S. de Lima, Y. Koriyama, T. Kurimoto, et al. (2012). Proc. Natl. Acad. Sci.. https://doi.org/10.1073/pnas.1119449109.

    Article  PubMed  Google Scholar 

  41. A. Stewart, J. Cachat, K. Wong, et al. (2010). Behav. Process.. https://doi.org/10.1016/j.beproc.2010.07.009.

    Article  Google Scholar 

  42. R. Blaser, L. Chadwick, and G. McGinnis (2010). Behav. Brain Res.. https://doi.org/10.1016/j.bbr.2009.11.009.

    Article  PubMed  Google Scholar 

  43. I. Zhdanova (2006). Zebrafish. https://doi.org/10.1089/zeb.2006.3.215.

    Article  PubMed  Google Scholar 

  44. I. Zhdanova, S. Wang, O. Leclair, and N. Danilova (2001). Brain Res.. https://doi.org/10.1016/s0006-8993(01)02444-1.

    Article  PubMed  Google Scholar 

  45. C. Maximino, T. de Brito, A. da Silva Batista, A. Herculano, S. Morato, and A. Gouveia (2010). Behav. Brain Res.. https://doi.org/10.1016/j.bbr.2010.05.031.

    Article  PubMed  Google Scholar 

  46. R. Blaser and D. Rosemberg (2012). PLoS ONE.. https://doi.org/10.1371/journal.pone.0036931.

    Article  PubMed  PubMed Central  Google Scholar 

  47. E. Perry, B. Tomlinson, G. Blessed, K. Bergmann, P. Gibson, and R. Perry (1978). Br. Med. J.. https://doi.org/10.1136/bmj.2.6150.1457.

    Article  PubMed  PubMed Central  Google Scholar 

  48. J. Tiedeken and J. Ramsdell (2009). Environ. Health Perspect.. https://doi.org/10.1289/ehp.11685.

    Article  PubMed  PubMed Central  Google Scholar 

  49. N. Dayal, M. Thakur, P. Patil, D. Singh, G. Vanage, and D. Joshi (2016). J. Nanopart. Res.. https://doi.org/10.1007/s11051-016-3549-0.

    Article  Google Scholar 

  50. M. Wullimann, B. Rupp, and H. Reichert, Neuroanatomy of the Zebrafish Brain (1996). https://doi.org/10.1007/978-3-0348-8979-7.

  51. N. Karoubi, R. Segev, and M. Wullimann (2016). Front. Neuroanat.. https://doi.org/10.3389/fnana.2016.00106.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to Dr. T. Y. Suman and Dr. Radhika Rajasree S. R., for their technical support on ICPMS facility of Centre for Ocean Research, Sathyabama Institute of Science and Technology. Special thanks to Dr. Suraiya Saleem (DBT-RA) for the diligent proofreading of this article.

Funding

This work was supported by Department of Biotechnology, India under research Grants No. BT/Bio-CARe/04/10082/2013-14 and BT/PR6765/NNT/28/618/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaretinam Rajesh Kannan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaji, K., Kannan, R.R. Polysorbate 80 Coated Gold Nanoparticle as a Drug Carrier for Brain Targeting in Zebrafish Model. J Clust Sci 30, 897–906 (2019). https://doi.org/10.1007/s10876-019-01548-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01548-1

Keywords

Navigation