Skip to main content
Log in

Optimality of Broken Extremals

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we analyse the optimality of broken Pontryagin extremal for an n-dimensional affine control system with a control parameter, taking values in a k-dimensional closed ball. We prove the optimality of broken normal extremals in many cases that include (but not are exhausted by) the cases of the involutive driftless part of the system for any n > k and of the contact driftless part for n = 3 and k = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the \(\mathcal {C}^{\infty } (M)\) category.

References

  1. Agrachev A. Some open problems arXiv:13042590. 2013.

  2. Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and Sub-Riemannian geometry, Book in preparation, p. 457 https://webusers.imj-prg.fr/~davide.barilari/Notes.php.

  3. Agrachev A, Biolo C. 2016. Switching in time-optimal problem: the 3-D case with 2-D control, J Dyn Control Syst. https://doi.org/10.1007/s10883-016-9342-7.

  4. Agrachev AA, Biolo C. 2016. Switching in time-optimal problem with control in a ball, to appear in SIAM J Control Optim arXiv:1610.06755.

  5. Agrachev A, Sachkov Yu L. 2004. Control theory from the geometric viewpoint. Springer.

  6. Agrachev A, Sigalotti M. On the local structure of optimal trajectories in R3. SIAM J Control Optim 2003;42:513–31.

    Article  MathSciNet  MATH  Google Scholar 

  7. Biolo C. Switching in time-optimal problem, PhD thesis at SISSA under the supervision of A. Agrachev, academic year 2016-2017.

  8. Brin M, Pesin Ya. Partially hyperbolic dynamical systems. Math USSR-Izv 1974; 8:177–218.

    Article  MATH  Google Scholar 

  9. Boscain U, Piccoli B. Optimal syntheses for control systems on 2-D manifolds. Berlin: Springer; 2004, p. xiv+ 261.

    MATH  Google Scholar 

  10. Fuller AT. Study of an optimum nonlinear system. J Electronics Control 1963; 15:63–71.

    Article  MathSciNet  Google Scholar 

  11. Gamkrelidze RV. Principles of optimal control theory. New York: Plenum Publishing Corporation; 1978.

    Book  MATH  Google Scholar 

  12. Kupka I. The ubiquity of Fuller’s phenomenon. Nonlinear controllability and optimal control. Marcel Dekker. In: Sussmann H, editors; 1990.

  13. Lee JM. Introduction to Smooth Manifolds, 2nd ed. New York: Springer; 2012. ISBN 978-1-4419-99 82-5.

    Book  Google Scholar 

  14. Pontryagin LS, Boltyanskij VG, Gamkrelidze RV, Miskchenko EF. The mathematica theory of optimal processes. Oxford: Pergamon Press; 1964.

    Google Scholar 

  15. Schättler H. Regularity properties of optimal trajectories: Recently developed techniques Sussmann H, editor.

  16. Schättler H, Sussmann H. On the regularity of optimal controls. Zeitr Angew Math Phys 1987;38 (2):292–301.

    Article  MathSciNet  MATH  Google Scholar 

  17. Shoshitaishvili AN. 1975. Bifurcations of the topological type of a vector field near a singular point. Trudy Seminarov I.G.Petrovskogo 1, pp. 279–309 (in Russian). English translation in American Math. Soc. Translations 118(2) (1982).

  18. Sigalotti M. Local regularity of optimal trajectories for control problems with general boundary conditions. J Dynam Control Systems 2005;11:91–123.

    Article  MathSciNet  MATH  Google Scholar 

  19. Sigalotti M. Regularity properties of optimal trajectories of single-input control systems in dimension three. J Math Sci 2005;126:1561–73.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sussmann H. Time-optimal control in the plane. Feedback control of linear and nonlinear systems, Lecture notes in control and information scienced. Berlin: Springer; 1985. p. 244–60.

  21. Sussmann H. Envelopes, conjugate points and optimal bang-bang extremals. In: Fliess M and Hazewinkel M, editors. Proceedings of the 1985 Paris Conference on Nonlinear Systems. Dordrecht: D. Reidel; 1986.

  22. Sussmann HJ. The Markov-Dubins problem with angular acceleration control. Proceedings of the 36th Conference on Decision and Control, San Diego; 1997.

  23. Zelikin MI, Borisov VF. Theory of chattering control with applications to astronautics, robotics, economics and engineering. Systems and control Foundations and applications. Boston: Birkhäuser; 1994.

Download references

Acknowledgments

The work of A.A. Agrachev was supported by the Russian Science Foundation under grant No 17-11-01387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Biolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrachev, A.A., Biolo, C. Optimality of Broken Extremals. J Dyn Control Syst 25, 289–307 (2019). https://doi.org/10.1007/s10883-018-9416-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9416-9

Keywords

Navigation