Skip to main content
Log in

Activated Chemical Defense in Marine Sponges—a Case Study on Aplysinella rhax

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Activated chemical defense, i.e., the rapid conversion of precursor molecules to defensive compounds following tissue damage, has been well documented for terrestrial and marine plants; but evidence for its presence in sessile marine invertebrates remains scarce. We observed a wound-activated conversion of psammaplin A sulfate to psammaplin A in tissue of the tropical sponge Aplysinella rhax. The conversion is rapid (requiring only seconds), the turnover rate increases with increasing wounding activity (e.g., ~20% after tissue stabbing vs. ~85% after tissue grinding), and is likely enzyme-catalyzed (no reaction in the absence of water and inhibition of the conversion by heat). Fish feeding assays with the pufferfish Canthigaster solandri, an omnivorous sponge predator, revealed an increased anti-feeding activity by the conversion product psammaplin A compared to the precursor psammaplin A sulfate. We propose that the wound-activated formation of psammaplin A in A. rhax is an activated defense targeted against predator species that are not efficiently repelled by the sponge’s constitutive chemical defense. Recent observations of conversion reactions also in other sponge species indicate that more activated defenses may exist in this phylum. Based on the findings of this study, we address the question whether activated defenses may be more common in sponges—and perhaps also in other sessile marine invertebrates—than hitherto believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Byun, D. S., Kim, D. S., Godber, J. S., Nam, S. W., Oh, M. J., Shim, H. S., and Kim, H. R. 2004. Isolation and characterization of marine bacterium producing arylsulfatase. J. Microbiol. Biotechnol. 14:1134–1141.

    CAS  Google Scholar 

  • Ciminiello, P., Costantino, V., Fattorusso, E., Magno, S., Mangoni, A., and Pansini, M. 1994. Chemistry of Verongida sponges.2. Constituents of the Caribbean sponge Aplysina fistularis forma fulva. J. Nat. Prod. 57:705–712.

    Article  CAS  Google Scholar 

  • Ciminiello, P., Fattorusso, E., Magno, S., and Pansini, M. 1996. Chemistry of Verongida sponges. 6. Comparison of the secondary metabolic composition of Aplysina insularis and Aplysina fulva. Biochem. Syst. Ecol. 24:105–107.

    Article  Google Scholar 

  • Clausen, T. P., Reichardt, P. B., Bryant, J. P., Werner, R. A., Post, K., and Frisby, K. 1989. Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15:2335–2346.

    Article  CAS  Google Scholar 

  • De Silva, E. D., and Scheuer, P. J. 1981. Three new sesterterpenoid antibiotics from the marine sponge Luffariella variabilis (Polejaff). Tetrahedron Lett. 22:3147–3150.

    Article  CAS  Google Scholar 

  • Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J., and Proksch, P. 1997. Wound activation of protoxins in marine sponge Aplysina aerophoba. J. Chem. Ecol. 23:1451–1462.

    Article  CAS  Google Scholar 

  • Ettinger-Epstein, P., Motti, C. A., De Nys, R., Wright, A. D., Battershill, C. N., and Tapiolas, D. M. 2007. Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J. Nat. Prod. 70:648–651.

    Article  PubMed  CAS  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    Article  PubMed  CAS  Google Scholar 

  • Fattorusso, E., Minale, L., and Sodano, G. 1970. Aeroplysinin-1, a new bromo-compound from Aplysina aerophoba. J. Chem. Soc. D 12:751–753.

    Article  Google Scholar 

  • Gahan, P. B. 1981. Cell senescence and death in plants, pp. 145–169, in I. D. Bowen, and R. A. Lockshin (eds.). Cell Death in Biology and PathologyChapman & Hall, London.

    Google Scholar 

  • Hällgren, J., and Öquist, G. 1990. Adaptations to low temperatures, pp. 265–293, in R. G. Alscher, and J. R. Cumming (eds.). Stress Responses in Plants: Adaptation and Acclimation MechanismsWiley, New York.

    Google Scholar 

  • Jiang, Y. H., Ahn, E. Y., Ryu, S. H., Kim, D. K., Park, J. S., Yoon, H. J., You, S., Lee, B. J., Lee, D. S., and Jung, J. H. 2004. Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication. BMC Cancer 4:70.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. P. 1989. Biological principles of the effects of ethanol: a review. Enzyme Microb. Technol. 11:130–152.

    Article  CAS  Google Scholar 

  • Jung, V., and Pohnert, G. 2001. Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57:7169–7172.

    Article  CAS  Google Scholar 

  • Jung, V., Thibaut, T., Meinesz, A., and Pohnert, G. 2002. Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the Mediterranean. J. Chem. Ecol. 28:2091–2105.

    Article  PubMed  CAS  Google Scholar 

  • Kernan, M. R., Faulkner, D. J., and Jacobs, R. S. 1987. The luffariellins, novel antiinflammatory sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J. Org. Chem. 52:3081–3083.

    Article  CAS  Google Scholar 

  • Kim, D., Lee, I. S., Jung, J. H., Lee, C. O., and Choi, S. U. 1999. Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells. Anticancer Res. 19:4085–4090.

    PubMed  CAS  Google Scholar 

  • Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409:241–246.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, N. 2002. Tridentatols D–H, nematocyst metabolites and precursors of the activated chemical defense in the marine hydroid Tridentata marginata (Kirchenpauer 1864). J. Nat. Prod. 65:681–684.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, N., Lobkovsky, E., and Clardy, J. 1996. Tridentatols A–C, novel natural products of the marine hydroid Tridentata marginata. Tetrahedron Lett. 37:9131–9134.

    Article  CAS  Google Scholar 

  • Matile, P. 1984. The toxic compartment of plant cells. Naturwissenschaften 71:18–24.

    Article  CAS  Google Scholar 

  • Miralto, A., Barone, G., Romano, G., Poulet, S. A., Ianora, A., Russo, G. L., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., and Giacobbe, M. G. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.

    Article  CAS  Google Scholar 

  • Mraz, W., and Jatzkewitz, H. 1974. Cerebroside sulphatase activity of arylsulphatases from various invertebrates. Hoppe-Seyler's Z. Physiol. Chem. 355:33–44.

    PubMed  CAS  Google Scholar 

  • Myers, R. F. 1991. Micronesian reef fishes. Coral, Barrigada, Guam.

    Google Scholar 

  • Newman, D. J., and Cragg, G. M. 2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67:1216–1238.

    Article  PubMed  CAS  Google Scholar 

  • Paul, V. J., and Puglisi, M. P. 2004. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep. 21:189–209.

    Article  PubMed  CAS  Google Scholar 

  • Paul, V. J., and Van Alstyne, K. L. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160:191–203.

    Article  CAS  Google Scholar 

  • Pham, N. B., Butler, M. S., and Quinn, R. J. 2000. Isolation of psammaplin A 11¢-sulfate and bisaprasin 11¢-sulfate from the marine sponge Aplysinella rhax. J. Nat. Prod. 63:393–395.

    Article  PubMed  CAS  Google Scholar 

  • Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. 39:4352–4254.

    Article  CAS  Google Scholar 

  • Pohnert, G. 2002. Phospholipase A(2) activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant. Physiol. 129:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Pohnert, G. 2004. Chemical defense strategies of marine organisms, pp. 179–219, in S. Schulz (ed.). Topics in Current Chemistry, Volume 239: The Chemistry of Pheromones and Other Semiochemicals ISpringer, Berlin.

    Chapter  Google Scholar 

  • Puyana, M., Fenical, W., and Pawlik, J. R. 2003. Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Mar. Ecol. Prog. Ser. 246:127–135.

    Article  CAS  Google Scholar 

  • Richelle-Maurer, E., De Kluijver, M. J., Feio, S., Gaudencio, S., Gaspar, H., Gomez, R., Tavares, R., Van-Der-Vyver, G., and Soest, R. W. M. V. 2003. Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem. Syst. Ecol. 31:1073–1091.

    Article  CAS  Google Scholar 

  • Schupp, P. J., and Paul, V. J. 1994. Calcium carbonate and secondary metabolites in tropical seaweeds—variable effects on herbivorous fishes. Ecology 75:1172–1185.

    Article  Google Scholar 

  • Schupp, P., Eder, C., Paul, V., and Proksch, P. 1999. Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar. Biol. 135:573–580.

    Article  CAS  Google Scholar 

  • Shin, J., Lee, H. S., Seo, Y., Rho, J. R., Cho, K. W., and Paul, V. J. 2000. New bromotyrosine metabolites from the sponge Aplysinella rhax. Tetrahedron 56:9071–9077.

    Article  CAS  Google Scholar 

  • Sterner, O., Bergman, R., Kihlberg, J., and Wickberg, B. 1985. The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J. Nat. Prod. 48:279–288.

    Article  CAS  Google Scholar 

  • Stoewsand, G. S. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—a review. Food Chem. Toxicol. 33:537–543.

    Article  PubMed  CAS  Google Scholar 

  • Tabudravu, J. N., Eijsink, V. G. H., Gooday, G. W., Jaspars, M., Komander, D., Legg, M., Synstad, B., and Van Aalten, D. M. F. 2002. Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorg. Med. Chem. 10:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Teeyapant, R., and Proksch, P. 1993. Biotransformation of brominated compounds in the marine sponge Verongia aerophoba. Evidence for an induced chemical defense? Naturwissenschaften 80:369–370.

    Article  CAS  Google Scholar 

  • Thompson, J. E., Barrow, K. D., and Faulkner, D. J. 1983. Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis. Acta Zool. Stockh. 64:199–210.

    Article  Google Scholar 

  • Thoms, C., and Schupp, P. J. 2007. Chemical defense strategies in sponges: a review, pp. 627–637, in M. R. Custódio, G. Lôbo-Hajdu, E. Hajdu, and G. Muricy (eds.). Porifera Research—Biodiversity, Innovation and Sustainability. Série Livros 28Museu Nacional, Rio de Janeiro.

    Google Scholar 

  • Thoms, C., Ebel, R., and Proksch, P. 2006. Activated chemical defense in Aplysina sponges revisited. J. Chem. Ecol. 32:97–123.

    Article  PubMed  CAS  Google Scholar 

  • Turon, X., Becerro, M. A., and Uriz, M. J. 2000. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res. 301:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Van Alstyne, K. L., and Houser, L. T. 2003. Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar. Ecol. Prog. Ser. 250:175–181.

    Article  CAS  Google Scholar 

  • Van Alstyne, K. L., Wolfe, G. V., Freidenburg, T. L., Neill, A., and Hicken, C. 2001. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213:53–65.

    Article  CAS  Google Scholar 

  • Wajant, H., and Effenberger, F. 1996. Hydroxynitrile lyases of higher plants. Biol. Chem. 377:611–617.

    PubMed  CAS  Google Scholar 

  • Weber, F. J., and Debont, J. A. M. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta-Rev. Biomembr. 1286:225–245.

    CAS  Google Scholar 

  • Weiss, B., Ebel, R., Elbrächter, M., Kirchner, M., and Proksch, P. 1996. Defense metabolites from the marine sponge Verongia aerophoba. Biochem. Syst. Ecol. 24:1–12.

    Article  CAS  Google Scholar 

  • Wittstock, U., and Gershenzon, J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5:300–307.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, G. V., Steinke, M., and Kirst, G. O. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature 387:894–897.

    Article  CAS  Google Scholar 

  • Zagrobelny, M., Bak, S., Rasmussen, A. V., Jorgensen, B., Naumann, C. M., and Moller, B. L. 2004. Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Zar, J. H. 1999. Biostatistical analysis. Prentice-Hall, Upper Saddle River, New Jersey.

    Google Scholar 

Download references

Acknowledgments

NMR and LC/MS analyses were conducted by T. Hemscheidt from the Department of Chemistry, University of Hawaii. D. Taitano and B. Antolin helped with the feeding assays and the compound extraction. L. Goldman and N. Pioppi assisted in sponge collection. We thank C. Kohlert-Schupp for interesting discussions, A. Kerr for critical proofreading of the manuscript and advice in statistical matters, as well as two anonymous reviewers whose comments greatly improved this manuscript. CT gratefully acknowledges support with a Fedodor Lynen Fellowship from the Alexander von Humboldt-Foundation, Bonn. This research was supported by NIH MBRS SCORE grant SO6-GM-44796-15 and SO6-GM-44796-16a to PS. This is University of Guam Marine Laboratory contribution number 613.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Thoms or Peter J. Schupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoms, C., Schupp, P.J. Activated Chemical Defense in Marine Sponges—a Case Study on Aplysinella rhax . J Chem Ecol 34, 1242–1252 (2008). https://doi.org/10.1007/s10886-008-9518-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9518-z

Keywords

Navigation