Skip to main content

Advertisement

Log in

Effect of Cathode Designs on Radiation Emission of Compact Diode (CD) Device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A comparative study on the radiation emission such as X-ray yield and efficiency has been carried out in compact diode device. Two different designs of cathode having sharp-edged razor blade (of 0.5 mm thickness with width 2 mm) and a sewing machine needle (of 0.5 mm diameter at tip with length of 39 mm) have been tested for this study. The radiation emission (X-ray yield) was determined by employing two set of PIN diodes at fixed positions. The maximum X-ray yield depends on cathode designs and electrodes separation in few mm. The yield of X-ray is small in the case of sharp-edged razor blade cathode than the sewing machine needle cathode. The X-ray yield, measured by 4π-geometry, shows its dependence on the cathode designs. The maximum X-ray yield is found to be 939.2 ± 65.7 mJ with efficiency of 0.4142 ± 0.0289%. This study indicates that the compact diode device could be optimized to a great extent for optimal X-ray yield by using an appropriate cathode design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, 5th edn. (Wiley, New York, 1997), p. 843

  2. L.C. Bradley et al., Rev. Sci. Instrum. 55, 25 (1984)

    Article  ADS  Google Scholar 

  3. E. Sato, H. Isobe, F. Hoahino, Rev. Sci. Instrum. 57, 1399 (1986)

    Article  ADS  Google Scholar 

  4. E. Sato et al., Rev. Sci. Instrum. 61, 2343 (1990)

    Article  ADS  Google Scholar 

  5. E. Sato et al., Rev. Sci. Instrum. 62, 2115 (1991)

    Article  ADS  Google Scholar 

  6. J.I. Levatter, Z. Li, Rev. Sci. Instrum. 52, 1651 (1981)

    Article  ADS  Google Scholar 

  7. C. Cachoncinlle et al., J. Phys. D 23, 984 (1990)

    ADS  Google Scholar 

  8. I.V. Tomov, P. Chen, P.M. Rentzepis, Rev. Sci. Instrum. 66, 5214 (1995)

    Article  ADS  Google Scholar 

  9. M.Z. Khan et al., J. Fusion Energ. 21, 211 (2003)

    Article  Google Scholar 

  10. M. Sharif, et al., Plasma Sources Sci. Technol. 13, B7–B13 (2004)

    Google Scholar 

  11. R. Verma et al., Appl. Phys. Lett. 92, 011506 (2008)

    Article  ADS  Google Scholar 

  12. N.K. Neog, S.R. Mohanty, E. Hotta, J. Appl. Phys. 99, 013302 (2006)

    Article  ADS  Google Scholar 

  13. M. Habibi, R. Amrollahi, M. Attaran, J. Fusion Energ. 28, 130–134 (2009)

    Article  Google Scholar 

  14. S. Hussain et al., Phys. Lett. A 349, 236–244 (2006)

    Article  ADS  Google Scholar 

  15. M.A. Mohammadi et al., Plasma Sources Sci. Technol. 16, 785–790 (2007)

    Article  ADS  Google Scholar 

  16. H.Y. Zhao, et al., Rev. Sci. Instrum. 79, 02B504 (2008)

  17. S.R. Mohanty et al., Jpn. J. Appl. Phys. 46, 3039–3044 (2007)

    Article  ADS  Google Scholar 

  18. C.S. Wong, H.J. Woo, S.L. Yap, Laser Part Beams 25, 497–502 (2007)

    Article  Google Scholar 

  19. M. Barbaglia et al., Plasma Phys. Control. Fusion 51, 045001 (2009)

    Article  ADS  Google Scholar 

  20. M. Kashani, J. Phys. Soc. Jpn. 72, 3 (2003)

    Google Scholar 

  21. J.W. Robison, Handbook of Spectroscopy (CRC, Cleveland, OH, 1974)

    Google Scholar 

  22. S. Lee, J. Phys. D Appl. Phys. 16, 2463 (1983)

    Article  ADS  Google Scholar 

  23. D.J. Johnson, Rev. Sci. Instrum. 45, 191 (1974)

    Article  ADS  Google Scholar 

  24. M. Zakaullah, J. Fusion Energ. 19, 143 (2000)

    Article  Google Scholar 

  25. S. Hussain et al., Phys. Lett. A 319, 181 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Higher Education Commission and Pakistan Science Foundation (PSF) Project No. PSF/R&D/C-QU/Phys (199). Author also acknowledges the Federal Urdu University of Arts, Science & Technology (FUUAST) Islamabad Pakistan regarding the financial support for higher studies in University of Malaya (UM) Kuala Lumpur Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zubair Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.Z., Yap, S.L., Khan, M.A. et al. Effect of Cathode Designs on Radiation Emission of Compact Diode (CD) Device. J Fusion Energ 32, 34–41 (2013). https://doi.org/10.1007/s10894-012-9519-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9519-3

Keywords

Navigation