Skip to main content
Log in

A Highly Selective and Sensitive Probe for Cu2+ Based on Rhodamine-Pyridazine Conjugate and its Application

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A naked-eye fluorescent chemodosimeter based on rhodamine-pyridazine conjugate L was synthesized and characterized. L exhibited high selectivity and excellent sensitivity in both absorbance and fluorescence detection of Cu2+ in aqueous solution with a broad pH span (1–10). The detection limit of the probe was shown to be up to 0.336 ppm. A simple paper test-strip system for the rapid monitoring of Cu2+ was developed, indicating its convenient use in environmental samples. Furthermore, fluorescence imaging experiments of Cu2+ in living MGC803 cells demonstrated its value of practical applications in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

References

  1. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    Article  CAS  PubMed  Google Scholar 

  2. Sommer AL (1931) Copper as an essential for plant growth. Plant Physiol 6:339–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ricardo U, Manuel O, Mauricio G (1998) Essential of copper in humans. Am J Clin Nutr 67:952S–959S

    Google Scholar 

  4. Underwood EJ (1971) Copper in trace elements in humans and animals, 4th edn. Academic, New York

    Google Scholar 

  5. Kumar NM (2006) Clin Proc 81:1371–1384

    Article  CAS  Google Scholar 

  6. Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  CAS  PubMed  Google Scholar 

  7. Wang M, Zhang D, Li M, Fan M, Ye Y, Zhao Y (2013) A rhodamine-cyclen conjugate as chromogenic and fluorescent chemosensor for copper ion in aqueous media. J Fluoresc 23:417–423

    Article  CAS  PubMed  Google Scholar 

  8. Zhao ML, Yang XF, He SF, Wang LP (2009) A rhodamine-based chromogenic and fluorescent chemosensor for copper ion in aqueous media. Sensors Actuators B 135:625–631

    Article  CAS  Google Scholar 

  9. Xu Z, Zhang L, Guo R, Xiang T, Wu C, Zheng Z, Yang F (2011) A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors Actuators B 156:546–552

    Article  CAS  Google Scholar 

  10. Xiang Y, Li Z, Chen X, Tong A (2008) Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74:1148–1153

    Article  CAS  PubMed  Google Scholar 

  11. Qi X, Jun EJ, Xu L, Kim SJ, Hong JSJ, Yoon YJ, Yoon J (2006) New BODIPY derivatives as OFF–ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J Org Chem 71:2881–2884

    Article  CAS  PubMed  Google Scholar 

  12. Wen ZC, Yang R, He H, Jiang YB (2006) A highly selective charge transfer fluoroionophore for Cu2+. Chem Commun 106–108

  13. Dai K, Xu BL, Chen JW (2014) A Rhodamine-based “off-on” colorimetric and fluorescent chemosensor for Cu(II) in aqueous and non-aqueous media. J Fluoresc 24:1129–1136

    Article  CAS  PubMed  Google Scholar 

  14. Swamy KMK, Ko SK, Kwon SK, Lee HN, Mao C, Kim JM, Lee KH, Kim J, Shin I, Yoon J (2008) Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem Commun 5915–5917

  15. Ramette RW, Sandell EB (1956) Rhodamine B equilibriums. J Am Chem Soc 78:4872–4878

    Article  CAS  Google Scholar 

  16. Beija M, Afonso CA, Martinho JM (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    Article  CAS  PubMed  Google Scholar 

  17. Jana A, Kim JS, Jung HS, Bharadwaj PK (2009) A crypt and based chemodosimetric probe for naked-eye detection of mercury(II) ion in aqueous medium and its application in live cell imaging. Chem Commun 4417–4419

  18. Li M, Zhang D, Liu Y, Ding P, Ye Y, Zhao Y (2014) A novel colorimetric and off–on fluorescent chemosensor for Cr3+ in aqueous solution and its application in live cell imaging. J Fluoresc 24:119–127

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131:2040–2041

    Article  CAS  PubMed  Google Scholar 

  20. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J (2005) A highly selective fluorescent chemosensor for Pb2+. J Am Chem Soc 127:10107–10111

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Hong H, Han R, Zhang D, Ye Y, Zhao Y (2012) A new bis(rhodamine)-based fluorescent chemosensor for Fe3+. J Fluoresc 22:789–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang Z, She MY, Zhang J, Chen XX, Huang YY, Zhu HY, Liu P, Li JL, Shi Z (2013) Highly sensitive and selective rhodamine Schiff base “off-on” chemosensors for Cu2+ imaging in living cells. Sensors Actuators B 176:482–487

    Article  CAS  Google Scholar 

  23. Yu CW, Wang T, Xu K, Zhao J, Li MH, Weng SX, Zhang J (2013) Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes Pigments 96:38–44

    Article  CAS  Google Scholar 

  24. Jiang ZH, Tian SJ, Wei CQ, Ni TJH, Li Y, Dai L, Zhang DZ (2013) A novel selective and sensitive fluorescent turn-on chemodosimeter based on rhodamine hydrazone for copper ions and its application to bioimaging. Sensors Actuators B 184:106–112

    Article  CAS  Google Scholar 

  25. Zhang D, Wang M, Chai MM, Chen XP, Ye Y, Zhao YF (2012) Three highly sensitive and selective colorimetric and off–on fluorescent chemosensors for Cu2+ in aqueous solution. Sensors Actuators B 168:200–206

    Article  CAS  Google Scholar 

  26. Farina C, Pinza M, Cerri A, Parravinci F (1988) Preparation of alkoxy(alkylidenehydrazino) pyridazines as antihypertensives, PCT Int Appl EP274409 A2

  27. Huang CY (1982) Determination of binding stoichiometry by the continuous variation method: the job plot. Methods Enzymol 87:509–525

    Article  CAS  PubMed  Google Scholar 

  28. Klassen CD (ed) (1995) The basic science of poisons, 5th edn. McGraw-Hill, New York, p 715

    Google Scholar 

  29. Standardization Administration of the People’s Republic of China, Standard examination methods for drinking water–metal parameters, GB/T 5750.6-2006

  30. Yu HB, Xiao Y, Guo HY (2012) From spirolactam mixtures to regioisomerically pure 5- and 6- rhodamines: a chemodosimeter-inspired strategy. Org Lett 14:2014–2017

    Article  CAS  PubMed  Google Scholar 

  31. Ma X, Tan ZW, Wei GH, Wei DB, Du YG (2012) Solvent controlled sugar–rhodamine fluorescence sensor for Cu2+ detection. Analyst 137:1436–1439

    Article  CAS  PubMed  Google Scholar 

  32. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14:406–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 20972143, 20972130) and Program for New Century Excellent Talents in University (NCET-11- 0950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Li, S., Yang, L. et al. A Highly Selective and Sensitive Probe for Cu2+ Based on Rhodamine-Pyridazine Conjugate and its Application. J Fluoresc 25, 15–24 (2015). https://doi.org/10.1007/s10895-014-1480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1480-2

Keywords

Navigation