Skip to main content
Log in

Monotonic optimization based decoding for linear codes

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

New efficient methods are developed for the optimal maximum-likelihood (ML) decoding of an arbitrary binary linear code based on data received from any discrete Gaussian channel. The decoding algorithm is based on monotonic optimization that is minimizing a difference of monotonic (d.m.) objective functions subject to the 0–1 constraints of bit variables. The iterative process converges to the global optimal ML solution after finitely many steps. The proposed algorithm’s computational complexity depends on input sequence length k which is much less than the codeword length n, especially for a codes with small code rate. The viability of the developed is verified through simulations on different coding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.R., McElice R.J., van Tiborg H.C.A.: On the intractibility of certain coding problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

    Article  Google Scholar 

  2. Feldman J., Wainwright M.J., Karger D.R.: Using linear programming to decode binary linear codes. IEEE Trans. Inf. Theory 51, 954–972 (2005)

    Article  Google Scholar 

  3. Frank M., Wolfe P.: An algorithm for quadratic programming. Naval Res. Log. Q. 3, 95–110 (1956)

    Article  Google Scholar 

  4. Gallager R.G.: Low Density Parity Check Codes. MIT Press, Cambridge (1962)

    Google Scholar 

  5. Hasselberg J., Pardalos P.M., Vairaktarakis G.: Test case generators and computational results for the maximum clique problem. J. Glob. Optim. 3, 463–482 (1993)

    Article  Google Scholar 

  6. Kschischang F.R., Frey B.J., Loeliger H.A.: Factor graphs and sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

    Article  Google Scholar 

  7. LDPC toolkit for Matlab. http://arun-10.tripod.com/ldpc/ldpc.htm

  8. Mackay D.J.C., Neal R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32, 1645–1646 (1996)

    Article  Google Scholar 

  9. Mackay D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45, 399–431 (1999)

    Article  Google Scholar 

  10. Margulis G.A.: Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2, 71–78 (1982)

    Article  Google Scholar 

  11. McEliece R., MacKay D., Cheng J.: Turbo decoding as an instance of Pearl’s belief propagation algorithm. IEEE J. Sel. Areas Commun. 16, 140–152 (1998)

    Article  Google Scholar 

  12. Pardalos P.M., Romeijn E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  Google Scholar 

  13. Pearl J.: Probabilistic Reasoning in Intelligent Systems. Margan Kaufmann, Los Altos (1988)

    Google Scholar 

  14. Tanner R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)

    Article  Google Scholar 

  15. Tuy H.: Convex Analysis and Global Optimization. Kluwer Academic, New York (1999)

    Google Scholar 

  16. Tuy H., Minoux M., Phuong N.T.H.: Discrete monotonic optimization with application to a discrete location problem. SIAM J. Optim. 17, 78–97 (2006)

    Article  Google Scholar 

  17. Tuy H.: Monotonic optimization: problems and solution approaches. SIAM J. Optim. 11, 464–494 (2000)

    Article  Google Scholar 

  18. Yang K., Feldman J., Wang X.: Nonlinear progrramming approachs to decoding low-density parity-check codes. IEEE J. Sel. Areas Commun. 24, 1603–1613 (2006)

    Article  Google Scholar 

  19. Yedidia J.S., Freeman W.T., Weiss Y.: Understanding Belief Propagation and its Generalizations. In: Lakemeyer, G., Nebel, B. (eds) Exploring Artificial Intelligence in the New Millenium chap 8., pp. 239–269. Morgan Kaufmann, CA (2003)

    Google Scholar 

  20. Yedidia J.S., Freeman W.T., Weiss Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51, 2282–2312 (2005)

    Article  Google Scholar 

  21. Yuille A.L.: CCCP algorithms to minimize the Bethe and Kikuchi energies: convergent alternatives to belief propagation. Neural Comput. 14, 1691–1722 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Tuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, H.D., Son, T.T., Tuy, H. et al. Monotonic optimization based decoding for linear codes. J Glob Optim 55, 301–312 (2013). https://doi.org/10.1007/s10898-011-9816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9816-9

Keywords

Navigation