Skip to main content
Log in

An active set Barzilar–Borwein algorithm for \(l_{0}\) regularized optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we develop an active set identification technique for the \(\ell _0\) regularization optimization. Such a technique has a strong ability to identify the zero components in a neighbourhood of a strict L-stationary point. Based on the identification technique, we propose an active set Barzilar–Borwein algorithm and prove that any limit point of the sequence generated by the algorithm is a strong stationary point. Some preliminary numerical results are provided, showing that the method is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137, 91–129 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Beck, A., Hallak, N.: Proximal mapping for symmetric penalty and sparsity. SIAM J. Optim. 28, 496–527 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bi, S.J., Liu, X.L., Pan, S.H.: Exact penalty decomposition method for zero norm minimization based on MPEC formulation. SIAM J. Sci. Comput. 36, 1451–1477 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14, 629–654 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37, 373–384 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Chen, T.Y., Curtis, F.E., Robinson, D.P.: A reduced-space algorithm for minimizing \(\ell _1\)-regularized convex functions. SIAM J. Optim. 3, 1583–1610 (2017)

    MATH  Google Scholar 

  12. Cheng, W.Y., Dai, Y.H.: Gradient-based method with active set strategy for \(\ell _1\) optimization. Math. Comput. 87, 1283–1305 (2018)

    MATH  Google Scholar 

  13. Dassios, I., Fountoulakis, K., Gondzio, J.: A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems. SIAM J. Sci. Comput. 37, 2783–2812 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13, 57–98 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Commun. Pure App. Math. 59, 797–829 (2006)

    MATH  Google Scholar 

  18. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)

    Google Scholar 

  20. Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via \(\ell _q\)(\(0<q<1\)). Appl. Comput. Harmon. Anal. 26, 395–407 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(\ell _1\) minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Jiao, Y.L., Jin, B.J., Lu, X.L.: A primal dual active set with continuation algorithm for the \(\ell _0\)-regularized optimization problem. Appl. Comput. Harmon. Anal. 39, 400–426 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Liang, J.W., Fadili, J., Peyré, G.: Activity identification and local linear convergence of forward–backward-type methods. SIAM J. Optim. 1, 408–437 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Y.L., Pan, S.H., Bi, S.J.: Equivalent Lipschitz surrogates for zero-norm and rank optimization problems. J. Glob. Optim. 72, 679–704 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23, 2448–2478 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    MATH  Google Scholar 

  28. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA), pp. 40–44. IEEE, Washington, DC (1993)

  31. Santis, M.D., Lucidi, S., Rinaldi, F.: A fast active set block coordinate descent algorithm for \(\ell _1\)-regularized least squares. SIAM. J. Optim. 26, 781–809 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Soubies, E., Blanc-Féraud, L., Aubert, G.: A unified view of exact continuous penalties for \(\ell _2\)-\(\ell _0\) minimization. SIAM J. Optim. 27, 2034–2060 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Soussen, C., Idier, J., Brie, D., Duan, J.: From Bernoulli–Gaussian deconvolution to sparse signal restoration. IEEE Trans. Signal Process. 59, 4572–4584 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Soubies, E., Blanc-Féraud, L., Aubert, G.: A continuous exact \(\ell _0\) penalty (CEL0) for least squares regularized problem. SIAM J. Imaging Sci. 8, 1607–1639 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Temlyakov, V.N.: Greedy approximation. Acta Numer. 17, 235–409 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Tseng, P., Yun, S.W.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387–423 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Wen, Z.W., Yin, W.T., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM J. Sci. Comput. 32, 1832–1857 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Wright, J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57, 2479–2493 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Xu, Z.B., Chang, X.Y., Xu, F.M., Zhang, H.: \(\ell _{\frac{1}{2}}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. 23, 1013–1027 (2012)

    Google Scholar 

  40. Yuan, G.X., Ho, C.H., Lin, C.J.: Recent advances of large-scale linear classification. Proc. IEEE 100, 2584–2603 (2012)

    Google Scholar 

  41. Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. Adv. Neural Inf. Process. Syst. 22, 1929–1936 (2009)

    Google Scholar 

  42. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyou Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Chinese NSF Grant (Nos. 11371154, 11961101, 11761014, 11971106, and 11461015), by the Ministry of Education, Humanities and Social Sciences Project (No. 17JYJAZH011) and by the Natural Science Foundation of Guangdong province (2018A030313229)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Chen, Z. & Hu, Q. An active set Barzilar–Borwein algorithm for \(l_{0}\) regularized optimization. J Glob Optim 76, 769–791 (2020). https://doi.org/10.1007/s10898-019-00830-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00830-w

Keywords

Mathematics Subject Classification

Navigation