Skip to main content
Log in

Diabetes and Impaired Fasting Glucose Prediction Using Anthropometric Indices in Adults from Maracaibo City, Venezuela

  • Original Paper
  • Published:
Journal of Community Health Aims and scope Submit manuscript

Abstract

To determine the predictive power of various anthropometric indices for the identification of dysglycemic states in Maracaibo, Venezuela. A cross-sectional study with randomized, multi-staged sampling was realized in 2230 adult subjects of both genders who had their body mass index (BMI), waist circumference (WC) and waist–height ratio (WHR) determined. Diagnoses of type 2 diabetes mellitus (DM2) and impaired fasting glucose (IFG) were made following ADA 2015 criteria. ROC curves were used to evaluate the predictive power of each anthropometric parameter. Area under the curve (AUC) values were compared through Delong’s test. Of the total 2230 individuals (52.6 % females), 8.4 % were found to have DM2, and 19.5 % had IFG. Anthropometric parameters displayed greater predictive power regarding newly diagnosed diabetics, where WHR was the most important predictor in both females (AUC = 0.808; CI 95 % 0.715–0.900. Sensitivity: 82.8 %; specificity: 76.2 %) and males (AUC = 0.809; CI 95 % 0.736–0.882. Sensitivity: 78.6 %; specificity: 68.1 %), although all three parameters appeared to have comparable predictive power in this subset. In previously diagnosed diabetic subjects, WHR was superior to both WC and BMI in females, and WHR and WC were both superior to BMI in males. Lower predictive values were found for IFG in both genders. Accumulation of various altered anthropometric measurements was associated with increased odds ratios for both newly and previously diagnosed DM2. The predictive power of anthropometric measurements was greater for DM2 than IFG. We suggest assessment of as many available parameters as possible in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Organización Mundial de la Salud. 10 datos sobre la diabetes. (November 2014). Available http://www.who.int/features/factfiles/diabetes/facts/es/. Accessed June 06, 2015.

  2. Escobedo, J., Buitrón, L. V., Velasco, M. F., Ramírez, J. C., Hernández, R., Macchia, A., et al. (2009). High prevalence of diabetes and impaired fasting glucose in urban Latin America: The CARMELA study. Diabetic Medicine, 26(9), 864–871.

    Article  CAS  PubMed  Google Scholar 

  3. Buysschaert, M., Medina, J. L., Bergman, M., Shah, A., & Lonier, J. (2015). Prediabetes and associated disorders. Endocrine, 48(2), 371–393.

    Article  CAS  PubMed  Google Scholar 

  4. Neeland, I. J., Turer, A. T., Ayers, C. R., Powell-Wiley, T. M., Vega, G. L., Farzaneh-Far, R., et al. (2012). Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA, 308(11), 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635–643.

    CAS  PubMed  Google Scholar 

  6. Lopez-Jimenez, F., & Miranda, W. R. (2010). Diagnosing obesity: Beyond BMI. Virtual Mentor, 12(4), 292–298.

    Article  PubMed  Google Scholar 

  7. Bermúdez, V., Pacheco, M., Rojas, J., Córdova, E., Velázquez, R., et al. (2012). Epidemiologic behavior of obesity in the Maracaibo City metabolic syndrome prevalence study. PLoS ONE, 7(4), e35392.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heymsfield, S. B. (2008). Development of imaging methods to assess adiposity and metabolism. International Journal of Obesity (London), 32(Suppl 7), S76–S82.

    Article  CAS  Google Scholar 

  9. Bermúdez, V., Marcano, R. P., Cano, C., Arráiz, N., Amell, A., Cabrera, M., et al. (2010). The Maracaibo city metabolic syndrome prevalence study: Design and scope. American Journal of Therapeutics, 17, 288–294.

    Article  PubMed  Google Scholar 

  10. World Health Organization. The world health report 2003. Available http://www.who.int/whr/2003/en/. Accessed June 06, 2015.

  11. Health Statistics. (1996) NHANES III reference manuals and reports (CDROM). Hyattsville, MD: Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/anthro.pdf. Accessed June 06, 2015.

  12. American Diabetes Association. (2015). Standards of medical care in diabetes—2015: Summary of revisions. Diabetes Care, 38(Suppl), S4.

    Google Scholar 

  13. Schneider, H. J., Friedrich, N., Klotsche, J., Pieper, L., Nauck, M., John, U., et al. (2010). The predictive value of different measures of obesity for incident cardiovascular events and mortality. Journal of Clinical Endocrinology and Metabolism, 95(4), 1777–1785.

    Article  CAS  PubMed  Google Scholar 

  14. Twells, L. K., Knight, J., & Alaghehbandan, R. (2010). The relationship among body mass index, subjective reporting of chronic disease, and the use of health care services in Newfoundland and Labrador, Canada. Population Health Management, 13(1), 47–53.

    Article  PubMed  Google Scholar 

  15. Castro, A. V., Kolka, C. M., Kim, S. P., & Bergman, R. N. (2014). Obesity, insulin resistance and comorbidities? Mechanisms of association. Arquivos Brasileiros de Endocrinologia e Metabologia, 58(6), 600–609.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lumeng, C. N., & Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic disease. The Journal of Clinical Investigation, 121(6), 2111–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hadaegh, F., Zabetian, A., Harati, H., & Azizi, F. (2006). Waist/height ratio as a better predictor of type 2 diabetes compared to body mass index in Tehranian adult men—A 3.6-year prospective study. Experimental and Clinical Endocrinology & Diabetes, 114(6), 310–315.

    Article  CAS  Google Scholar 

  18. de Koning, L., Gerstein, H. C., Bosch, J., Diaz, R., Mohan, V., Dagenais, G., et al. (2010). Anthropometric measures and glucose levels in a large multi-ethnic cohort of individuals at risk of developing type 2 diabetes. Diabetologia, 53(7), 1322–1330.

    Article  PubMed  Google Scholar 

  19. Shah, A., Bhandary, S., Malik, S. L., Risal, P., & Koju, R. (2009). Waist circumference and waist–hip ratio as predictors of type 2 diabetes mellitus in the Nepalese population of Kavre District. Nepal Medical College Journal, 11(4), 261–267.

    CAS  PubMed  Google Scholar 

  20. Zhao, X., Zhu, X., Zhang, H., Zhao, W., Li, J., Shu, Y., et al. (2012). Prevalence of diabetes and predictions of its risks using anthropometric measures in southwest rural areas of China. BMC Public Health, 12, 821.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z., & Hoy, W. E. (2004). Body size measurements as predictors of type 2 diabetes in Aboriginal people. International Journal of Obesity and Related Metabolic Disorders, 28(12), 1580–1584.

    Article  CAS  PubMed  Google Scholar 

  22. Berber, A., Gómez-Santos, R., Fanghänel, G., & Sánchez-Reyes, L. (2001). Anthropometric indices in the prediction of type 2 diabetes mellitus, hypertension and dyslipidaemia in a Mexican population. International Journal of Obesity and Related Metabolic Disorders, 25(12), 1794–1799.

    Article  CAS  PubMed  Google Scholar 

  23. Hsu, W. C., Araneta, M. R., Kanaya, A. M., Chiang, J. L., & Fujimoto, W. (2015). BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care, 38(1), 150–158.

    Article  PubMed  Google Scholar 

  24. Xu, F., Wang, Y. F., Lu, L., Liang, Y., Wang, Z., Hong, X., et al. (2010). Comparison of anthropometric indices of obesity in predicting subsequent risk of hyperglycemia among Chinese men and women in Mainland China. Asia Pacific Journal of Clinical Nutrition, 19(4), 5865–5893.

    Google Scholar 

  25. Coqueiro, R. S., Santos, G. A., Borges, L. J., Sousa, T. F., Fernandes, M. H., & Barbosa, A. R. (2013). Anthropometric indicators of obesity and hyperglycaemia in Brazilian older people. Journal of Diabetes Nursing, 17, 351–355.

    Google Scholar 

  26. Hajian-Tilaki, K., & Heidari, B. (2015). Is waist circumference a better predictor of diabetes than body mass index or waist-to-height ratio in Iranian adults? International Journal of Preventive Medicine, 6, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rojas, J., Gonzalez, R., Chavez-Castillo, M., Salazar, J., Añez, R., Chacin, M., et al. (2013). Diabetes mellitus tipo 2, historia natural de la enfermedad, y la experiencia en el Centro de Investigaciones Endocrino Metabólicas “Dr. Félix Gómez”. Diabetes Internacional, 1, 13–26.

    Google Scholar 

  28. Jayawardana, R., Ranasinghe, P., Sheriff, M. H., Matthews, D. R., & Katulanda, P. (2013). Waist to height ratio: A better anthropometric marker of diabetes and cardio-metabolic risks in South Asian adults. Diabetes Research and Clinical Practice, 99(3), 292–299.

    Article  CAS  PubMed  Google Scholar 

  29. Dambal, A., Herur, A., Padaki, S., Patil, S., Manjula, R., Chinagudi, S., et al. (2011). The correlation of the duration of diabetes with anthropometric indices in type-2 diabetes mellitus. Journal of Clinical and Diagnostic Research, 5(2), 257–259.

    Google Scholar 

  30. Decoda Study Group, Nyamdorj, R., Qiao, Q., Lam, T. H., Tuomilehto, J., Ho, S. Y., et al. (2008). BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring), 16(7), 1622–1635.

    Article  Google Scholar 

  31. Vazquez, G., Duval, S., Jacobs, D. R, Jr., & Silventoinen, K. (2007). Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis. Epidemiologic Reviews, 29, 115–128.

    Article  PubMed  Google Scholar 

  32. Nyamdorj, R., Qiao, Q., Söderberg, S., Pitkäniemi, J. M., Zimmet, P. Z., Shaw, J. E., et al. (2009). BMI compared with central obesity indicators as a predictor of diabetes incidence in Mauritius. Obesity (Silver Spring), 17(2), 342–348.

    Article  Google Scholar 

  33. Qiao, Q., & Nyamdorj, R. (2010). Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index? European Journal of Clinical Nutrition, 64(1), 30–34.

    Article  CAS  PubMed  Google Scholar 

  34. Min, T., & Stephens, J. W. (2015). Targeting abdominal obesity in diabetes. Diabetes Management, 5(4), 301–309.

    Article  CAS  Google Scholar 

  35. Lee, B. J., Ku, B., Nam, J., Pham, D. D., & Kim, J. Y. (2014). Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes. IEEE Journal of Biomedical and Health Informatics, 18(2), 555–561.

    Article  PubMed  Google Scholar 

  36. Angulo, A., Moliné, M. E., Gonzalez, R., Cedeño, K. A., Añez, R., Salazar, J., et al. (2014). Prevalencia de prediabetes en pacientes con sobrepeso y obesidad atendidos en ambulatorios tipo II del municipio Sucre, estado Miranda. Síndrome Cardiometabólico, IV, 3, 23–32.

    Google Scholar 

  37. Kufe, C. N., Klipstein-Grobusch, K., Leopold, F., Assah, F., Ngufor, G., Mbeh, G., et al. (2015). Risk factors of impaired fasting glucose and type 2 diabetes in Yaoundé, Cameroon: A cross sectional study. BMC Public Health, 15, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sahai, S., Vyas, D., & Sharma, S. (2011). Impaired fasting glucose: A study of its prevalence documented at a tertiary care centre of central India and its association with anthropometric variables. Journal, Indian Academy of Clinical Medicine, 12(3), 187–192.

    Google Scholar 

  39. Muñoz, J. M., Córdova, J., Mayo, H., & Boldo, X. (2013). Prediabetes y diabetes sin asociación con obesidad en jóvenes mexicanos. ALAN, 63(2), 148–156.

    Google Scholar 

  40. Meyer, C., Pimenta, W., Woerle, H. J., Van Haeften, T., Szoke, E., Mitrakou, A., et al. (2006). Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care, 29(8), 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta, A. K., & Johnson, W. D. (2010). Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. Journal of Inflammation (London), 7, 36.

    Article  Google Scholar 

  42. Navarro, E., Funtikova, A. N., Fíto, M., & Schröder, H. (2015). Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Molecular Nutrition & Food Research, 59(1), 75–93.

    Article  CAS  Google Scholar 

  43. Bermudez, V., Rojas, J., Salazar, J., Añez, R., Toledo, A., Bello, L., et al. (2015). Sensitivity and specificity improvement in abdominal obesity diagnosis using cluster analysis during waist circumference cut-off point selection. J Diabetes Res, 2015, 750265.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Grant No. CC-0437-10-21-09-10 from Consejo de Desarrollo Científico, Humanístico y Tecnológico (CONDES), University of Zulia, and Research Grant No. FZ-0058-2007 from Fundacite-Zulia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Salazar.

Ethics declarations

Conflict of interest

There are no financial or other contractual agreements that might cause conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermúdez, V., Salazar, J., Rojas, J. et al. Diabetes and Impaired Fasting Glucose Prediction Using Anthropometric Indices in Adults from Maracaibo City, Venezuela. J Community Health 41, 1223–1233 (2016). https://doi.org/10.1007/s10900-016-0209-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10900-016-0209-3

Keywords

Navigation