Skip to main content
Log in

Synthesis and Characterization of Cu–Mn Substituted SrFe12O19 Hexaferrites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, bimetallic (Cu–Mn) substituted SrFe12O19 hexaferrites [Sr1−2xMnxCuxFe12O19 (0.0 ≤ x ≤ 0.1)] were synthesized via sol–gel auto-combustion approach. The effect of bimetallic substitution on structure, morphology and magnetism of SrFe12O19 was investigated. SEM images divulge the nano-size of the prepared products with speck morphology. X-ray powder diffraction analysis affirmed their complete conversion to SrFe12O19 hexagonal crystal phase. The results from 57Fe Mössbauer suggested that all five important sextets of Sr1−2xMnxCuxFe12O19 hexaferrites effected due to the substitution of Cu and Mn ions. Cation distribution calculation showed that as the percentage of Mn and Cu increased in Sr1−2xMnxCuxFe12O19 (0.0 ≤ x ≤ 0.1), particularly for x = 0.03 the relative area of 12k and 4f2 site increased. This indicates that Fe ions are migrated towards 12k and 4f2 octahedral site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)

    Article  CAS  Google Scholar 

  2. A. Manikandan, M. Durka, S. Arul Antony, Hibiscus rosa-sinensis leaf extracted green methods, magneto-optical and catalytic properties of spinel CuFe2O4 nano- and microstructures. J. Inorg. Organomet. Polym. Mater. 25, 1019–1031 (2015)

    Article  CAS  Google Scholar 

  3. G. Mathubala, A. Manikandan, S.A. Antony, P. Ramar, Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1−xFe2O4 (x = 0.0–1.0) nanoparticles. J. Mol. Struct. 1113, 79–87 (2016)

    Article  CAS  Google Scholar 

  4. Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. 20, 789–834 (2009)

    Google Scholar 

  5. J. Smit, H.P.J. Wijn, Ferrites: physical properties of ferromagnetic oxides in relation to their technical applications. (Philip’s Technical Library, Eindhoven, 1959)

    Google Scholar 

  6. T. Fujiwara, Barium ferrite media for perpendicular recording. IEEE Trans. Magn. 21, 1480–1485 (1985)

    Article  Google Scholar 

  7. D.E. Speliotis, Performance of MP++ and BaFe++ tapes in high density recording applications. IEEE Trans. Magn. 31, 2877–2882 (1995)

    Article  CAS  Google Scholar 

  8. J. Kreisel, H. Vincent, F. Tasset, P. Wolfers, The magnetic anisotropy change of BaFe12−2xIrxCoxO19: a single-crystal neutron diffraction study of the accompanying atomic and magnetic structures. J. Magn. Magn. Mater. 213, 262–270 (2000)

    Article  CAS  Google Scholar 

  9. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Enhanced catalytic activity and magnetic properties of spinel MnxZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts by microwave irradiation route. J. Supercond. Novel Magn. 29, 2141–2149 (2016)

    Article  CAS  Google Scholar 

  10. S. Harker, G. Stewart, W. Hutchison, A. Amiet, D. Tucker, Microwave absorption and 57Fe Mössbauer properties of Ni-Ti doped barium hexaferrite. Hyperfine Interact. 230, 205–211 (2015)

    Article  CAS  Google Scholar 

  11. A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. John Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlatt. Microstruct. 64, 118–131 (2013)

    Article  CAS  Google Scholar 

  12. G. Li, G.-G. Hu, H.-D. Zhou, X.-J. Fan, X.-G. Li, Attractive microwave-absorbing properties of La1−xSrxMnO3 manganite powders. Mater. Chem. Phys. 75, 101–104 (2002)

    Article  CAS  Google Scholar 

  13. J. Qiu, Q. Zhang, M. Gu, H. Shen, Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl.Phys. 98, 103905 (2005)

    Article  Google Scholar 

  14. J. Fritzsche, R. Kramer, V. Moshchalkov, Visualization of the vortex-mediated pinning of ferromagnetic domains in superconductor-ferromagnet hybrids. Phys. Rev. B 79, 132501 (2009)

    Article  Google Scholar 

  15. I. Ali, M. Islam, M.N. Ashiq, I. Sadiq, M.A. Khan, N. Karamat, M. Ishaque, G. Murtaza, I. Shakir, Z. Ahmad, Electrical behavior of Tb-Mn substituted Y-Type hexa-ferrites for high-frequency applications. J. Electron Mater. 44, 1054–1061 (2015)

    Article  CAS  Google Scholar 

  16. K. Praveena, M. Bououdina, M.P. Reddy, S. Srinath, R. Sandhya, S. Katlakunta, Structural, magnetic, and electrical properties of microwave-sintered Cr3+-doped Sr hexaferrites. J. Electron Mater. 44, 524–531 (2015)

    Article  CAS  Google Scholar 

  17. A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, F.M. Al-Dweri, Y. Maswadeh, U. Welp, Magnetic study of M-type Ru-Ti doped strontium nanocrystalline particle. J. Alloys Compd. 648, 419–427 (2015)

    Article  CAS  Google Scholar 

  18. I.A. Auwal, H. Gungunes, A. Baykal, S. Guner, S.E. Shirsath, M. Sertkol, Structural, morphological, optical, cation distribution and Mossbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram. Int. 42, 8627–8635 (2016)

    Article  CAS  Google Scholar 

  19. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  20. G. Asti, F. Bolzoni, J.M. Le Breton, M. Ghidini, A. Morel, M. Solzi, P. Tenaud, Anisotropy effects of La-Co substitutions in M-type Sr hexaferrites. Curr. Top. Solid Phys. 1, 3306–3309 (2004)

    Article  CAS  Google Scholar 

  21. A. Manikandan, V.J. Judith, L.K. Joh, Structural, optical and magnetic properties of porous α-Fe2O3 nanostructures prepared by rapid combustion method. J. Nanosci. Nanotechnol. 13, 2986–2992 (2013)

    Article  CAS  Google Scholar 

  22. S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route. Mater. Res. Bull. 63, 58–66 (2015)

    Article  CAS  Google Scholar 

  23. I.A. Auwal, B. Unal, H. Gungunes, S.E. Shirsath, A. Baykal, Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites. Ceram. Int. 42, 9100–9115 (2016)

    Article  CAS  Google Scholar 

  24. A.B. Rajput, S. Hazra, G.F. Fernando, N.N. Ghosh, Synthesis of single-phase barium hexaferrite nanopowder via a novel EDTA precursor-based route and its dc resistivity and magnetic property, synthesis and reactivity in inorganic. Metal-Org. Nano-Metal Chem. 41, 1114–1121 (2011)

    Article  CAS  Google Scholar 

  25. D.A. Vinnik, A.Y. Tarasova, D.A. Zherebtsov, S.A. Gudkova, D.M. Galimov, V.E. Zhivulin, E.A. Trofimov, S. Nemrava, N.S. Perov, L.I. Isaenko, R. Niewa, Magnetic and structural properties of barium hexaferrite BaFe12O19 from various growth techniques. Materials 10, 578–589 (2017)

    Article  Google Scholar 

  26. F. Hu, L. Fernandez-Garcia, X.-S. Liu, D.-R. Zhu, M. Suárez, J.L. Menéndez, A strong magneto-optical activity in rare-earth La3+ substituted M-type strontium ferrites. J. Appl. Phys. 109, 113906 (2011)

    Article  Google Scholar 

  27. A. Baykal, M.S. Toprak, Z. Durmus, H. Sozeri, Hydrothermal synthesis of SrFe12O19 and its characterization. J. Supercond. Nov. Magn. 25, 2081–2085 (2012)

    Article  CAS  Google Scholar 

  28. H. Sözeri, A. Baykal, B. Ünal, Low-temperature synthesis of single-domain Sr hexaferrite particles by solid-state reaction route. Phys. Status Solidi A 209, 2002–2013 (2012)

    Article  Google Scholar 

  29. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  CAS  Google Scholar 

  30. I.A. Auwal, H. Güngüneş, S. Güner, E. Sagar, M. Shirsath, A. Sertkol, Baykal, Structural, magneto-optical properties and cation distribution of SrBiLaYFeO (0.0 ≤ x ≤ 0.33) hexaferrites. Mater. Res. Bull. 80, 263–272 (2016)

    Article  CAS  Google Scholar 

  31. M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloys Compd. 585, 465–473 (2014)

    Article  CAS  Google Scholar 

  32. S.B. Galvao, A.C. Lima, S.N. de Medeiros, J.M. Soares, C.A. Paskocimas, The effect of the morphology on the magnetic properties of barium hexaferrite synthesized by Pechini method. Mater. Lett. 115, 38–41 (2014)

    Article  CAS  Google Scholar 

  33. E.D. Solovyova, E.V. Pashkova, V.P. Ivanitski, O.I. Vyunov, A.G. Belous, The effect of the morphology on the magnetic properties of barium hexaferrite synthesized by Pechini method. J.Magn. Magn. Mater. 330, 72–75 (2013)

    Article  CAS  Google Scholar 

  34. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12–2x)O19, J.Magn. Magn. Mater. 350, 23–29 (2014)

    Article  CAS  Google Scholar 

  35. J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrovski, S.M. Mini, C.W. Kimball, evolution of oxygen-vacancy ordered crystal structures in the Perovskite Series SrnFenO3n–1(n = 2, 4, 8, and ∞) and the relationship to electronic and magnetic properties. J. Solid State Chem. 151, 190–209 (2000)

    Article  CAS  Google Scholar 

  36. L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel, F. Kools, P. Tenaud, Mössbauer investigation of Sr1−xLaxFe12–yCoyO19ferrites. Phys. B 327, 135–139 (2003)

    Article  CAS  Google Scholar 

  37. I.A. Auwal, B. Ünal, H. Güngüneş, S.E. Shirsath, A. Baykal, Dielectric properties, cationic distribution calculation and hyperfine interactions of La and Bi doped strontium hexaferrites. Ceram Int. 42, 9100–9115 (2016)

    Article  CAS  Google Scholar 

  38. J.G. Rensen, J.A. Schulkes, J.S. van Wieringen, Mössbauer analysis and cation distribution of Zn substituted BaFe12O19 hexaferrites. J. Phys. Colln. C1 32, 924–925 (1971)

    Google Scholar 

  39. J.M.L Breton, D. Seifert, J. Töpfer, L. Lechevallier, A Mössbauer investigation of Sr1 – xLaxFe12O19 (0 ≤ x ≤ 1) M-type hexaferrites. Phys. B 470, 33–38 (2015)

    Article  Google Scholar 

  40. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43(5), 12822–12827 (2017)

    Article  CAS  Google Scholar 

  41. A. Baykal, H. Güngüneş, H. Sözeri, I. Auwal, S. Asiri, S.E. Shirsath, Md. Amir, A. Demir Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceram. Int. 43(17), 15486–15492 (2017)

    Article  CAS  Google Scholar 

  42. A. Baykal, S. Yokuş, S. Güner, H. Güngüneş, H. Sözeri, Md. Amir, Magneto-optical properties and Mössbauer Investigation of BaxSryPbzFe12O19 hexaferrites. Ceram. Int. 43(4), 3475–3482 (2017)

    Article  CAS  Google Scholar 

  43. I.A. Auwal, S. Güner, H. Güngüneş, A. Baykal, Sr1–xLaxFe12O19 (0.0 ≤ x ≤ 0.5) hexaferrites: synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceram. Int. 42(11), 12995–13003 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Baykal acknowledges the University of Dammam for their research facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Baykal, A., Gungunes, H. et al. Synthesis and Characterization of Cu–Mn Substituted SrFe12O19 Hexaferrites. J Inorg Organomet Polym 28, 212–222 (2018). https://doi.org/10.1007/s10904-017-0691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0691-9

Keywords

Navigation