Skip to main content
Log in

The Effect of Social Isolation on Locomotor Activity in the Houseflies (Musca Domestica)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Social behavior is broadly defined as the interaction between members of the same species that changes their subsequent behavior. Isolation has been shown to affect behavioral traits such as courtship, mating aggression, foraging, learning and memory. This study investigated the effect of isolation (8 days) on adult Musca domestica locomotion. We found that isolation significantly affected male locomotor activity and that the effect of isolation was reduced over time giving a significant interaction of isolation and time. Females’ locomotion was not affected by isolation. These results suggest differences in response to social deprivation between sexes and add to the understanding of immediate consequences of behavioral interactions between houseflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnqvist G, Andrés JA (2006) The effects of experimentally induced polyandry on female reproduction in a monandrous mating system. Ethology 112:748–756

    Article  Google Scholar 

  • Bahrndorff S, Kjaersgaard A, Pertoldi C, Loeschcke V, Schou T, Skovgard H, Hald B (2012) The effects of sex-ratio and density on locomotor activity in the housefly (Musca domestica). J Insect Sci 12:71

    Article  PubMed Central  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Buchan PB, Sohal RS (1981) Effect of temperature and different sex ratios on physical activity and life span in the adult housefly, Musca domestica. Exp Gerontol 16:223–228

    Article  CAS  PubMed  Google Scholar 

  • Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Donlea JM, Ramanan N, Shaw PJ (2009) Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324:105–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everitt BS (2010) A handbook of statistical analyses using R. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Gatti S, Ferveur JF, Martin JR (2000) Genetic identification of neurons controlling a sexually dimorphic behaviour. Curr Biol 10:667–670

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Wu CF, Liu W, Yang JY, Chen D (2004) Sex difference in psychological behavior changes induced by long-term social isolation in mice. Prog Neuro Psychoph 28:115–121

    Article  Google Scholar 

  • Hagenbuch KL (2005) Experience-dependent courtship modification in the housefly, Musca domestica. Dissertation, Rice University

  • Hoffmann AA (1987) A laboratory study of male territoriality in the sibling species Drosophila-melanogaster and Drosophila simulans. Anim Behav 35:807–818

    Article  Google Scholar 

  • Hoffmann AA (1990) The influence of age and experience with conspecifics on territorial behavior in Drosophila melanogaster. J Insect Behav 3:1–12

    Article  Google Scholar 

  • Hosken DJ, Stockley P, Tregenza T, Wedell N (2009) Monogamy and the battle of the sexes. Annu Rev Entomol 54:361–378

    Article  CAS  PubMed  Google Scholar 

  • Imai C (1984) Population dynamics of houseflies, Musca domestica, on experimentally accumulated refuse. Res Popul Ecol 26:353–362

    Article  Google Scholar 

  • Kjærsgaard A, Blanckenhorn WU, Pertoldi C, Loeschcke V, Bahrndorff S (2013) Plasticity in behavioural responses and resistance to temperature stress in Musca domestica. 99:123–131

  • Lihoreau M, Rivault C (2008) Tactile stimuli trigger group effect in cockroach aggregations. Anim Behav 75:1965–1972

    Article  Google Scholar 

  • Lihoreau M, Brepson L, Rivault C (2009) The weight of the clan: even in insects, social isolation can induce a behavioural syndrome. Behav Process 82:81–84

    Article  Google Scholar 

  • Lihoreau M, Costa JT, Rivault C (2012) The social biology of domiciliary cockroaches: colony structure, kin recognition and collective decisions. Insect Soc 59:445–452

    Article  Google Scholar 

  • Long TA, Rice WR (2007) Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proc R Soc B 274:3105–3112

    Article  PubMed Central  PubMed  Google Scholar 

  • MacAlpine JLP, Marshall KE, Sinclair BJ (2011) The effects of CO2 and chronic cold exposure on fecundity of female Drosophila melanogaster. J Insect Physiol 57:35–37

    Article  CAS  PubMed  Google Scholar 

  • Maleszka J, Barron AB, Helliwell PG, Maleszka R (2009) Effect of age, behaviour and social environment on honey bee brain plasticity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:733–740

    Article  PubMed  Google Scholar 

  • Malik A, Singh N, Satya S (2007) Housefly (Musca domestica): A review of control strategies for a challenging pest. J Environ Sci Health, Part B 42:453–469

    Article  CAS  Google Scholar 

  • Meffert LM, Bryant EH (1991) Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution 45:293–306

    Article  Google Scholar 

  • Meffert LM, Hagenbuch KL (2005) The genetic architecture of housefly mating behavior. Curr Top Dev Biol 66:189–213

    Article  CAS  PubMed  Google Scholar 

  • Murvosh CM, Fye RL, Labrecque GC (1964) Studies on the mating behavior of the housefly, Musca domestica L. Ohio J Sci 64:264–271

    Google Scholar 

  • Nilsen SP, Chan YB, Huber R, Kravitz EA (2004) Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:12342–12347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Partridge L, Ewing A, Chandler A (1987) Male size and mating success in Drosophila melanogaster - the roles of male and female behavior. Anim Behav 35:555–562

    Article  Google Scholar 

  • Patterson RS (1957) On the causes of broken wings of the housefly. J Econ Entomol 50:104–105

    Article  Google Scholar 

  • Punzo F, Alvarez J (2002) Effects of early contact with maternal parent on locomotor activity and exploratory behavior in spiderlings of Hogna carolinensis (Araneae : Lycosidae). J Insect Behav 15:455–465

    Article  Google Scholar 

  • Punzo F, Ludwig L (2002) Contact with maternal parent and siblings affects hunting behavior, learning, and central nervous system development in spiderlings of Hogna carolinensis (Araeneae: Lycosidae). Anim Cogn 5:63–70

    Article  PubMed  Google Scholar 

  • Riemann JG, Thorson BJ (1969) Effect of male accessory material on oviposition and mating by female houseflies. Ann Entomol Soc Am 62:828–834

    Article  CAS  PubMed  Google Scholar 

  • Riemann JG, Moen DJ, Thorson BJ (1967) Female monogamy and its control in houseflies. J Insect Physiol 13:407–418

    Article  CAS  PubMed  Google Scholar 

  • Rose JK, Sangha S, Rai S, Norman KR, Rankin CH (2005) Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J Neurosci 25:7159–7168

    Article  CAS  PubMed  Google Scholar 

  • Ruan HY, Wu CF (2008) Social interaction-mediated lifespan extension of Drosophila Cu/Zn superoxide dismutase mutants. Proc Natl Acad Sci U S A 105:7506–7510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schou T, Faurby S, Kjaersgaard A, Pertoldi C, Loeschcke V, Hald B, Bahrndorff S (2013) Temperature and population density effects on locomotor activity of the housefly, Musca domestica. Environ Entomol 42:1322–1328

    Article  CAS  PubMed  Google Scholar 

  • Shin JG, Seo MJ, Shin HJ, Youn YN (2003) Mating preferences and theoretical discussion on courtship in the male housefly, Musca domestica. J Asia Pac Entomol 6:21–27

    Article  Google Scholar 

  • Sokolowski MB (2010) Social interactions in “simple” model systems. Neuron 65:780–794

    Article  CAS  PubMed  Google Scholar 

  • Technau GM (2007) Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. J Neurogenet 21:183–196

    Article  PubMed  Google Scholar 

  • Ueda A, Kidokoro Y (2002) Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol Entomol 27:21–28

    Article  Google Scholar 

  • van Dijken FR, van Sambeck MJPW, Scharloo W (1977) Influence of anaesthesia by carbon dioxide and ether on locomotor activity in Drosophila melanogaster. Experientia 33:1360–1361

    Article  Google Scholar 

  • Zhou C, Rao Y, Rao Y (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Zordan MA, Benna C, Mazzotta G (2007) Monitoring and analyzing Drosophila circadian locomotor activity. Methods Mol Biol 362:67–81

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

SB was supported by a grant from the Danish Research Council for Technology and Innovation (Grant 11–116256). AK was supported by a grant from the Danish Natural Sciences Research Council (FNU) (Grant 0602-01916B). CP was supported by a grant from Danish Natural Science Research Council (grant numbers: 11–103926, 09–065999, 95095995) and the Carlsberg Foundation (grant number 2011-01-0059). A special thank to the Aalborg Zoo Conservation Foundation (AZCF) for financial support to CP and SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cino Pertoldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, K., Kjærsgaard, A., Bahrndorff, S. et al. The Effect of Social Isolation on Locomotor Activity in the Houseflies (Musca Domestica). J Insect Behav 28, 288–296 (2015). https://doi.org/10.1007/s10905-015-9501-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-015-9501-9

Keywords

Navigation