Skip to main content
Log in

Low-Temperature Specific Heat of Graphite and CeSb2: Validation of a Quasi-adiabatic Continuous Method

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the application of a fast quasi-adiabatic continuous method to the measurement of specific heat at 4He temperatures, which can be used for the study of a wide range of materials. The technique can be performed in the same configuration used for the relaxation method, as the typical time constants between calorimetric cell and thermal sink at 4.2 K are chosen to be of the order of τ∼30 s. The accuracy in the absolute values have been tested by comparing them to relaxation-method results obtained in the same samples (performed in situ using the same set-up), with a deviation between the absolute values <3 % in the whole temperature range. This new version of the continuous calorimetric method at low temperatures allows us to completely characterize and measure a sample within a few hours with a high density of data points, whereas when employing other methods we typically need a few days. An exhaustive study has been performed for reproducibility to be tested. In the present work, we have applied this method to two different substances: CeSb2, which exhibits three magnetic transitions at 15.5 K, 11.7 K and 9.5 K, and graphite, both highly-oriented pyrolytic graphite (HOPG) and natural crystals. Our results on these graphites are discussed in comparison with previous published data on different kinds of graphite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.J. Morin, J.P. Maita, Phys. Rev. 129, 3 (1963)

    Article  Google Scholar 

  2. B.T. Matthias, T.H. Geballe, K. Andres, E. Corenzwit, G.W. Hull, J.P. Maita, Science 159, 530 (1968)

    Article  ADS  Google Scholar 

  3. R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 6 (1971)

    Article  Google Scholar 

  4. F. Pobell, Matter and Methods at Low Temperatures, 1st edn. (Springer, Berlin, 1992), pp. 30–43 and 64–77

    Book  Google Scholar 

  5. E. Gmelin, Thermochim. Acta 29, 1 (1979)

    Article  Google Scholar 

  6. T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Kluwer Academic, New York, 1999). Chap. 3

    Book  Google Scholar 

  7. P.F. Sullivan, G. Seidel, Phys. Rev. 173, 3 (1968)

    Article  Google Scholar 

  8. R. Bachmann, F.J. DiSalvo Jr., T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972)

    Article  ADS  Google Scholar 

  9. E. Pérez-Enciso, M.A. Ramos, Thermochim. Acta 461, 50 (2007)

    Article  Google Scholar 

  10. T. Plackowski, Y. Wang, A. Junod, Rev. Sci. Instrum. 73, 2755 (2002)

    Article  ADS  Google Scholar 

  11. F. Hullinger, H.R. Ott, J. Less-Common Met. 55, 103 (1977)

    Article  Google Scholar 

  12. P.C. Canfield, J.D. Thompson, Z. Fisk, J. Appl. Phys. 70, 5992 (1991)

    Article  ADS  Google Scholar 

  13. S.L. Bud’ko, P.C. Canfield, C.H. Mielke, A.H. Lacerda, Phys. Rev. B 57, 13624 (1998)

    Article  ADS  Google Scholar 

  14. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science 280, 1253 (1998)

    Article  ADS  Google Scholar 

  15. D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki, C.A. Brown, M.S. de Vries, Chem. Phys. Lett. 179, 181 (1991)

    Article  ADS  Google Scholar 

  16. T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992)

    Article  ADS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  18. B.J.C. van der Hoeven Jr., P.H. Keesom, Phys. Rev. 130, 4 (1963)

    Google Scholar 

  19. U. Mizutani, T. Kondow, T.B. Massalski, Phys. Rev. B 17, 8 (1978)

    Article  Google Scholar 

  20. M.A. Ramos, J. Barzola-Quiquia, P. Esquinazi, A. Muñoz-Martín, A. Climent-Font, M. García-Hernández, Phys. Rev. B 81, 214404 (2010), and references therein

    Article  ADS  Google Scholar 

  21. P.C. Canfield, Z. Fisk, Philos. Mag. B 65, 1117 (1992)

    Article  ADS  Google Scholar 

  22. A. Mandanici, M. Cutroni, A. Triolo, V. Rodriguez-Mora, M.A. Ramos, J. Chem. Phys. 125, 054514 (2006).

    Article  ADS  Google Scholar 

  23. M. Hassaine, R.J. Jiménez-Riobóo, I.V. Sharapova, O.A. Korolyuk, A.I. Krivchikov, M.A. Ramos, J. Chem. Phys. 131, 174508 (2009)

    Article  ADS  Google Scholar 

  24. Y. Wang, T. Plackowski, A. Junod, Physica C 355, 179 (2001)

    Article  ADS  Google Scholar 

  25. M.G. Alexander, D.P. Goshorn, D.G. Onn, Phys. Rev. B 22, 4535 (1980)

    Article  ADS  Google Scholar 

  26. J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fisher, Science 289, 1730 (2000)

    Article  ADS  Google Scholar 

  27. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fisher, Appl. Phys. A 74, 339 (2002)

    Article  ADS  Google Scholar 

  28. M.I. Bagatskii, M.S. Barabashko, A.V. Dolbin, V.V. Sumarokov, B. Sundqvist, Low Temp. Phys./Fiz. Nizk. Temp. 38, 667 (2012)

    Google Scholar 

Download references

Acknowledgements

The Laboratorio de Bajas Temperaturas (LBT-UAM) is an associated unit with the ICMM-CSIC. This work was partially supported by the Spanish MINECO (FIS2011-23488, and Consolider Ingenio Molecular Nanoscience CSD2007-00010 program) and by the Comunidad de Madrid through program Nanobiomagnet (S2009/MAT-1726). T.P.-C. acknowledges financial support from the Spanish Ministry of Education through FPU grant AP2008-00030 for a PhD thesis. J.H. acknowledges financial support from the Spanish Ministry of Education through grant SB2010-0113 for a postdoctoral stay. We are grateful to Daniel Farías for providing us with the sample of natural graphite, and to Paul Canfield for his stay at our Laboratory where he led the implementation of an experimental set-up for growing metallic crystals at high temperatures, within our MSc program on Condensed Matter Physics and Nanotechnology. The CeSb2 crystal was grown by us using that system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pérez-Castañeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Castañeda, T., Azpeitia, J., Hanko, J. et al. Low-Temperature Specific Heat of Graphite and CeSb2: Validation of a Quasi-adiabatic Continuous Method. J Low Temp Phys 173, 4–20 (2013). https://doi.org/10.1007/s10909-013-0884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0884-8

Keywords

Navigation